12345678910111213141516171819202122232425262728293031323334 |
- # this file collects several utility functions
- import numpy as np
- from keras import backend as K
- def naive_percent_loss(y_true, y_pred):
- """TODO: Docstring for .
- # Sums up the relative errors at all wavelength points of a spectrum
- # in comparison to a target spectrum
- : y_true -- target spectrum
- : y_pred -- predicted spectrum
- Note that the user needs to ensure we are comparing similiar spectra
- """
- y_err = np.abs(y_true - y_pred) / y_true
- y_err_f = K.flatten(y_err)
- return K.sum(y_err_f)
- def calc_mre(y_true, y_pred):
- """TODO: Docstring for .
- # Gives the mean relative errors in percentage terms comparing two sets of spectra
- """
- y_err = np.abs(y_true - y_pred) / y_true
- y_err = 100*np.abs(y_true - y_pred)/y_true
- return np.mean(y_err)
- #legacy function to compare two size vectors, not really needed anymore
- # def size_percent_loss(y_true, y_pred):
- # y_true_a = 0.5*y_true*(size_max - size_min) + size_av
- # y_pred_a = 0.5*y_pred*(size_max - size_min) + size_av
- # y_err = np.abs(y_true_a - y_pred_a)/y_true_a
- # y_err_f = K.flatten(y_err)
- # return K.sum(y_err_f)
|