snlay.py 1.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. # this module will allow us to call scattnlay
  2. import numpy as np
  3. import PyMieScatt as ps
  4. import matplotlib.pyplot as plt
  5. from scattnlay import scattnlay, fieldnlay
  6. from scipy import interpolate
  7. #make a materials dictionary
  8. matsdict = {
  9. 1: './materials/gold.dat',
  10. 2: './materials/silicon.dat',
  11. 3: './materials/silica.dat',
  12. 4: './materials/tio2.dat',
  13. 5: './materials/silver.dat'
  14. }
  15. def get_nk(datafile, wavelengths):
  16. """Reads the given file and returns the n+ik complex at
  17. the given wavelength after suitable interpolation
  18. :datafile: TODO
  19. :wavelength: TODO
  20. :returns: TODO
  21. """
  22. rawdisp = np.loadtxt(datafile)
  23. f_r = interpolate.interp1d(rawdisp[:,0], rawdisp[:,1])
  24. f_i = interpolate.interp1d(rawdisp[:,0], rawdisp[:,2])
  25. return f_r(wavelengths) + 1j*f_i(wavelengths)
  26. # make a function that will return the x and m matrices of
  27. # any given multilayered spherical particle
  28. # these can then be passed on to scattnlay
  29. def make_xm(sizes, mats, lams):
  30. x = np.ones((len(lams), len(sizes)), dtype = np.float64)
  31. m = x - x + 0 + 0*1j
  32. sizes = np.cumsum(sizes)
  33. for s, size in enumerate(sizes):
  34. x[:,s] = np.pi*size/lams
  35. m[:,s] = get_nk(matsdict[mats[s]], lams)
  36. #theta = np.linspace(0.0, 180, num_pts, dtype = np.float64)*np.pi/180.0
  37. return x, m
  38. def calc_spectrum(sizes, mats, lams):
  39. x, m = make_xm(sizes, mats, lams)
  40. terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
  41. return Qext