{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:09:29.317864Z", "start_time": "2018-09-18T17:09:29.188916Z" } }, "outputs": [], "source": [ "import numpy as np\n", "#import PyMieScatt as ps\n", "import matplotlib.pyplot as plt\n", "from scattnlay import scattnlay, fieldnlay\n", "\n", "#import jtplot submodule from jupyterthemes\n", "from jupyterthemes import jtplot\n", "# currently installed theme will be used to\n", "# set plot style if no arguments provided\n", "jtplot.style()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:09:42.143788Z", "start_time": "2018-09-18T17:09:41.926613Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAEMCAYAAACFqrzZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4XNW18OHf9K5my92ybNlylS133LANh54QCCXUAIHcFMhNB27gJl8C3JCQkIQLN6EkkAAhAUINofgYjG2Qu2WruMkqrrJk1en9+0M2cZGlkTxN0nqfx4+lmTNnr6O2Zu+z99qaaDSKEEIIIZJHm+oAhBBCiIFGkq8QQgiRZJJ8hRBCiCST5CuEEEIkmSRfIYQQIsn0qQ7gTH7xi19ogFFAe6pjEUKIPiYDOHDPPfec1XKWzZs3mwBLfEIaMLyzZ8/2d3dQ2iZfOhLvvlQHIYQQfVQesL83L7zvvvuKS0tLf9Dc3DzB5/MZ4xxXv2Y2mwM5OTl7iouLf/XQQw+Vnum4dE6+7QAvvvgiwWDwtCcdDgdOpzPpQaWDgXrtA/W6YeBeu1x3zxkMBm688Ubo5ajh5s2bdSUlJY/u27cv49hD4V4FMkA5nU5dY2PjJK/X++jmzZsvmD17dqdfv3ROvgAEg8FOk++ZHh8IBuq1D9TrhoF77XLdKeFoaWnJRpLuWTn2NXQArZ09LxOuhBBCiCST5CuEEEIkmSRfIYQQIskk+QohhBiwHn744aL58+dnJbtdSb5CCCFEL2m1vUujaT/bWQghhDjV4sWLs5ctWzb0wQcf3AnwjW98Y2xhYWHm9773vdJoNMoXv/jF4bm5uab169c3X3755SNzcnJMoVAounPnztYXXnhhv8/ni9x1113jMjMzjTfddNO4G2+8MVpeXt7y1FNP1ZrNZu211147curUqVl6vV5bXV3tfP755/e1t7eHAP7whz/MfvPNN/cvWLAgNycnx3Tfffdtb2trC/Ukfkm+ol8bNs7ILMVO5hA9TQeDlK500bBv4C1dEeKsaLRozTmGZDUX8TUHiUa6PKa8vNx5/fXXj7XZbDq32x0eO3asw+v1hgoKCqxVVVWeCRMmODZs2NAUCAQiL774Yl1NTY1n0KBBxm9+85vjr7zyyuEvvfTSwccff7z64YcfLnr99df3r1+//rMlQbfffns+wIMPPljp9/sjX/7yl/Nuv/32/N/85jdVx4+ZPXt2zmOPPba7paUlFI1Ge1xJTJKv6LcKZppZeEUmO9Z52LbKxehJZi6+I4d1b7eze6M31eEJ0WdozTmGrAt/Mz1Z7bV+8N3tEe/RLt8lt7a2hpqamvxTpkyx19fX+/1+f7iioqJ1ypQpjrq6Ou/o0aPtzz77bG1DQ0Pg+GsaGxsDq1evPrJ48eIhwMHOzpuZmamfNm1a9t13313qdDrDAK+++urBhx9+eIbVatV6PJ4IwIoVK+qPHu06xq5I8hX90pA8AwuvyOST19qo3uYD4ODuAIf3+jn32izCoSh7t/pSHKUQfUPE1xxs/eC725PZXizHVVVVtU+aNClj0KBBvqqqqvYdO3a0K4oyrLa21tPe3h5oaGgIjB8/3nrFFVeMHDZsmNVgMGg1Gg1ut/uMQ8RDhgwxajQaHnjggaITHw+FQtHBgwcb9+3b5wNobGzstn5zVyT5in5Hq4PFV2eyo8TzWeI9rq7Czyevt7HoikxaG0I0HezRbRohBqZohO56oqmwa9cu56WXXjoiKyvLuGHDhqYdO3a4brnlFtu0adMyq6urnQC33XbbuM2bNzc9/vjje30+X2T58uWDLrroohHHz3HqiHFjY2MgEolw7733bvf5fF2PfZ8Fme0s+p3JC6zo9BpKV7o6fb661MeujR6W35CNyaJJcnRCiHipqKhw5ubmWgoKChwVFRXOQCAQbWho8M6bN2/wrl27nAAmk0nn9XrDPp8vMmLECNPSpUuHnngOl8sVHDp0qOn4562traHKysqWL3/5y3lZWVl6gKysLP2CBQuy4xm79HxFv2K2aZmx3M66t9oJBc88B2Lju04GjzKw+OpMVj7faelVIUSac7lc4fr6es/xjwF2797dnp+fb6+oqHACvPzyy3VXXHHFqEsuuWTkkSNHvFu3bm1esGBB7vFzvP/++4evuuqqvPPOO294RUVFy9NPP133zDPP1F511VUj7rnnnslWq1XvdruDO3bsaCspKWmJV+ySfEW/Uny+nbbGENXbu76fG43Ax39v5fK7BjNlkZXKTzxJilAIEU8/+9nPdpz4+WuvvXb4tddeO3z88w0bNrRu2LDhpHfYb775Zv3xjzdt2tS2adOmshOf9/l8kRdffPEAcKCzNr/+9a9vPtu4JfmKfiNrqJ7CORbefaYZYpj4726N8Mk/2lh6XRYNdUGOHoj9lpZWB9OX2Zk410IkApWfuqn4xBNTu0IIIfd8Rb8x71IHteU+GnuwjnffDj+7NnhYdl0WRnNs9381Wlh2fRbjZ1rY+K6TrStdTF9qZ/YF9t6GLoQYYFLS81VV1QKUAYMVRUl6TU3R/4yeZGLIGCOv/7axx6/d9J6TIWOMLLwyk1UvdX3/V6OBJVdnkjPcwLtPNeFu65gM2dYY4uLbczhSF+TArrNagSCEGABS1fP9GWcYSxeip3R6mHeZg/LVbtytPV8ZEAnDx39rZcR4I5POsXZ57PzPZzC8wMgHf2r+LPECNO4Lsn2Vi3Muz0AnN3OEEN1IevJVVXUWcCnw82S3LfqnoqV2olEoW9350qJYOJvDfPJ6G3MvcZA/zdzpMfMudTBuupkVz7XQ3hQ+7fmy1W4AJs7rOoELIURS36OrqqoHngbujPU1DoeDYLDze3gOhyNOkfU9A/XaT73urGFapi81U/IPP1bL2X1Nmuug9IMA516bSe4oK7vXB4mEwGCG4gtMDBunY+3ffQRdFs705d9dEmL6MgeHduoIx7kkQY+/5wYbGvso0JnB30LUuZ++OCNMftZ7xmBIWglmcRaSPUD2fWC7oiirVFVdFssLnE5np8nX4XDgdDrjHF7fMFCv/dTrNlk1zP38IHZt8LBnW3y+HmWfQHODkYVXZDJ+jh5nc5isXD1tR0O88+RR2hpP7/GeqLwECs/JZdiEMDvXx2/5Uk++57qMPCyTr8YwZDqEA0RDXjSmTKIBJ9497+CvWQHRrq8jXcjPes9J8u0bkpZ8VVUtoKPHOzNZbYr+y2jRcMGtOXidETa9F98/zgf3BPjHo42MGG/ClqWlrSFMfW0gpk5jJAw713uYdI41rsk3FhqjA8ukqzCNWUbg4Dra1/yUcGtNx3N6C8aR52CZeAWm0QtxbXqCiPtIUuMTQvxbMnu+S4BcoEJVVQAjkKGqaj3wRUVRPk1iLCLNabR0uqOYRgujJpqYd6kDrzOC+pcWwgkozxwJ0+tZy3s2eSg+387wAiOH9wY6P0hvxjR6CcZhs9BljAKdgaivlVD7foIN5QQbthH1xVh5S6vHlK9gmXQFEVc97WsfINyy96RDoiEv/rqPCBxcj634djKW/ATX+t8QatnTq2sUQpydZCbfvwPvnfD5QuBZoBhoTmIcIk3ljjYw7Vwbw8YaMVm0hENR/J4IPk8EvyeCXq/HMciC3qCh4hM32z5yEUnD0VO/N0r1Ni9TFlo7Tb7GkQuwFt1ENOQncOATfDUriIYDaM3Z6LPHYSn8PPaZdxBqriJweBOB+s2A+/SGdEaMI+ZjmXgFGp0BT9nzBPZ/Sldd9GjIg2vT41gmX4Nj0b041/2a0NHK+F28EGni3nvvnVhWVtbyzjvvNKQ6ls4kLfkqiuIFPttEVVXVZiCqKEr9mV8lBooZ59mYsczO3lIva15pw9MeRmfQYLZpMVm1mK1aTEYNZWvcHKoKEAqk98ShHSUeLr9zEPZsHa6WY+8QtHpsM76CccRcPDtewV+9glMTZWD/GgB0jpEYhs/GOGIe1qnXEXXXY23cQdTfClojOvsw9IMnQziIr/p9fNXvQ/gMvezTRPHueJlo2Idj/vdwrvsVoaad8bt4IUS3UrYiUVGUVYAU2BBMX25j6iIbHzzbQn3NmROIw6HF6ewbBSxa6kM07AsycZ6Fze+7QGfCcc730VpyaFv9EyLOQ12+Puw8SNh5EN/ut9Cac3DkLwTzUHSZ+UTDfsKuevx1HxFsKO/15Cnf7rfQaHQ4zvk+zpJHCDXv7tV5hBA9J+UAREoNLzBSvNzOB891nXj7ol0bPMy7LIPSVUGsc36AxmClffVPiQZ6NkEs4msmcvBjPAmY9evd9TpodDgW/ABnya8kAYs+JTc313DLLbfkjx492t7a2urfuHFjk6Iow7/zne+Unnic2WzWfv3rXx87atQou16v1zQ2NvpefvnlfXv27PEAFBQUWK+77rq8IUOGWCKRSLShocH785//fBfAZZddNmTJkiVDrVar3ufzhT/++OP6eAxlS/IVKaPTw8IrMihb7aa+un8lXoDach/zLstg0uWXs/+oHecn/9PjxJsM3p2vAhEcC+6WIWjRKY0GrJnapK1h8rRFgtEY7ix99atfHXf06FH/3XffvS0rK0t/5513TujsOK1Wy6ZNm5r/8Ic/1ITD4ehVV1014o477ii47777ykOhUPS6667L27FjR9vPf/7znTqdTjNx4kQ7wMiRI00XX3zxyF/+8pc79u/f78vIyNDn5uYa43GNknxFykxZaEOj0bB9Ve8rU6WzSNRA7eHpjMuvovKt99My8R7n3fka0UgExzk/wLXxMYIN21Mdkkgj1kyt4ZofDpmerPZeeaRhu7s10mWZmtzcXENeXp79iSee2Ov3+yNHjhwJrF69+sjnPve5Uace6/F4ImvXrv1sL95XXnnl0JIlS4aOGDHCtG/fPl84HI5mZ2cbBw0aZGxsbAyUl5c7AcLhcBTQjBo1ytLY2Bhob28Ptbe3x2V9hSRfkRIGk4aipTZK3mxPyFKhlNPqsc/9T+oazEwseIbsHA/Nh7t/WSr5dr8B4QD2+d/Fu+MVfFXv0hcrYon487RFgq88krx3ZJ62rhMvQHZ2tjEYDEbb2to++wvS1NTU6RCa0WjU3HDDDaMnTpyYabVa9dFoNKrT6TQZGRl6gGeffbbmiiuuGHH33XdPCgaDkZKSksa33377SH19feCvf/1rzbnnnpt73XXX5R86dMj9+uuvH9i9e/dZL+KX5CtSonCuBZ87Qm1Z15ve90kaHfY5d6JzjKB+5YMcyIkycb6VkjfaUx1Zt3x7/0XYdRDbrK9hHD4XT8VLnd4H1ugt6DJGo8vMQ2sZTDTgJNi087T1xaJ/iEahu55osrW0tAQMBoMmMzNTfzwBDxo0qNMh4csuu2zo6NGjbY8++ujOxsbGoF6v1/zud7+bCWgAjhw5EnjyySdrAcaPH2+96667Cuvq6jzbt293lpSUtJSUlLQYDAbN5ZdfPuz2228vuOeee8rONn5JviLptLqOIeftq1zEcl+nT9EZsc+5C13GaJxrHyLqa2HneiPLrs9i07tOgv70v+DgkW20rbwHy5RrcSz6LyLeZkKtNRD2ozFlobMPR2fLJRoOEHYeJOJuRJMzHsvkqwk1V+HZ/hxh58FUX4bo5xobG4P79u1zXXvttSP//Oc/78vOzjYsWbJkSGfHms1mXSgUijidzrDJZNJec801IzQazWcbeC9btmzQtm3b2lpaWkIejyccjUaJRCLRkSNHmnJzc02VlZXOYDAY9fv9kUik5zundUaSr0i6/GlmdHoNVVu93R/ch2hMGdjnfQeN3oJzzQNEfB21Yw7tCeBzRSiYaWHnuuSWnOytaMCJp/SPeHe8gmHIDHQZo9DojISb9xDYv5Zw+z7CrvqTljlpzTlYpnyJjHN/imvL7wke3pzCKxADwdNPP119yy235D/yyCPFra2t/i1btjQvWbJk6KnHvfvuu0e++tWvWn/5y1/O8Hg8oZUrVx4OBAKf/fBOnDjR8bnPfW6U0WjUejye0KpVq+rLy8td+fn5lssuu2zEbbfdZolGo9HGxkbfc889Vx2P2CX5iqSbMMdC1RZv3Hf9SSX9oEnY59xJ2HkI57pfEw3+uyJVNAq7NniZNN/aZ5LvcVF/+2eFP7oT8TXj3vJ7QmMV7HPuwrXpcUnAIqEaGxuDv/rVrz6rkXrRRRfltrW1BQAefvjhXccfb21tDT3yyCMn1VJdsWLF0eMfHx9yPlVtba33oYceSsj0/6Tv5ysGNnu2juHjTOzZ3LeS0JloDDas02/FsfBe/Ps+xlnyi5MS73F7Nntw5OgYNjYuqxTSmr9GxVP+IvbZ30SXmZ/qcEQ/VlBQYB09erQZID8/37Js2bJh27Zt6xPlimPq+aqq+ifgKUVR1iU4HtHPjZ9loXF/oNut+dKd1jII09gLMOUvI+Ju7HQzgxP5PVFqy3xMnG/pd8VEOuOvUdHZR2Cf/x3aV/2YaCD9J5uJvsfhcOivvfbaPLvdbvB6vaHS0tLmf/3rX2lZy/lUsQ47jwU+UVW1EngKeF5RlBi3XBHiGA2Mn2mhbHXfXderyxqHueASjCPmEmqtxr31jwQPbyKWJTk713u45Ks52LNd/6733I95yl/EkZmHrfh2XBt+k+pwRD9UWlraXlpaWp7qOHojpmFnRVGWA4XAP4H/Ag6pqvq8qqpLEhmc6F+GjTVitmup2d73lhcZhhbjWHw/GUt+DBpoX/sAzjU/I3h4I7GuhW3cH6S+JsCM5bbEBpsuomHcW57EMHgyprylqY5GiLQS8z1fRVH2KoryX8Bo4AYgG1ipquoOVVW/o6qqI1FBiv5hwiwL+yp9BHzpv9zmOP2gSWQsexD7nLsIt9bQpn4f96Yner2edetKFwXFFhw5ujhHmp4inkbcZc9jLboJra3TVSAi/TizsrJauj9MdCU7O7sFOGNZu97Mdo4AoWP/a+jYJvAHwE9UVb1VUZQ3exOo6N8MJg1jpppZ+UIf+Z3WmbAV3Yxx9GL8NStwfvqLuJSHbNwX5NDeALMvdLDqb93fuTFZNX2+Alhg/xqMw2Zim/k1nGsfRKpmpbfZs2eHFy5c+L3S0tLvNzc3T/D5fKZUx9SXmM1mf3Z29u6ZM2c+Onv27DPeX4o5+aqqOga4HbgNyAT+BixQFGWTqqo64H7gCUCSrzhNfpEZnzvC4T6wgYLWOgT7/O8C0P7xjwm374vr+Te+087l3xrMyAlGDu7p/OthtmlZ9MUMRk8yEw5F2flpkI3vxzWMpHJve5bM5T/HPP5SfFXvpDoc0Y2HHnqoFLh58+bNJsCS6nj6GO/s2bO73fs01tnO7wPnAxXAz+mYcPVZN0BRlLCqqk8CP+llsKKfmzDb0lFUI807PTrHSBwL7yXUvAfXlichHP/9g9uOhilb7WbhlZm8/UQTPvfJFXOyhupRbs7G1RrmjceOYs/SsfRLWbS3Wti1vm8WJokGnLi3/Qn7nLsINmwn3L4/1SGJGBxLIn1jE+0+Jtae72FgcTdLjY7QMStaiJNk5uoYkmdk9cttqQ6lS1rbUByLfkSwfivu0j+SyHcK2z5yMWyskfNvzmLFn1sIeDvaGl5gZPkNWdSW+Sh5q51oBFqPhNj6gZ85Fzs4sMuPuzU+5e2SLVi/hcDBddhmfY32j39yUnUsIQaamJKvoii3xnBMFKg724BE/zNhtpVDe/1pvbxGY3TgOOeHBBsrE554AaIR+PCFFpRbsrni24PZu9WLI0dP3mQTpR+62L7q5EId+yvCjJ4aZPpSOyVv9t01s56y58lY/j9YJl2Jd8erqQ5HiJSJabazqqq/U1X12508/p+qqj4a/7BEf6HVQcFMM1Wb03i4VKPDPu/bRHwtuLc+RbLGxgO+KO8+3cy2j1xkDtbj90R45w9NpyXe40pXupgw24I1o+8WpouGvLi3Po15/GXosgtSHY4QKRPrb/FVQEknj5cAV8cvHNHfjJpoQqfTUFeRvmt7LRO/gM42BNfG30GSd02LRmDXei8fvthKyZvtNB0689TmI7VBmutDTJjTt+e/hI5W4q/9EPusr6PR9+1rEaK3Yk2+g4HGTh5vAmTxnjijCXMs7N3mTdvlMvqcQswTPo9ry5NEA+lfeWvXBg+Fs61o+m7nFwBP5d+JhnzY5tzJsS1VhRhQYv0VPgAs6OTxBcCh+IUj+hNHjo5RE0zs3pieQ84avRXb7G/g2/s+ocaKVIcTk5rtPgxmDSML+/jSy3AA1/rfoM8cg3X6LUgCFgNNrLOd/wI8qqqqF1hx7LELgV8DTyYiMNH3TV5gpb4mQEt9enZ7rTNuJRpw4d3Zdyb+hAJR6ip8jJtu5sDOvr0CJOJrxlnyCI6F94JGi2f7cx3j8EIMALH2fB8C3gf+AbQd+/cqHYn4Z4kJTfRlRrOGCbMtVH6anlsHGkctwjhsFq7N/weR9HxzcCY1232MnmxCb+j7vcVw+z6cn/4c49AZOBbdh84xKtUhCZEUsS41CgO3qKr6ADDz2MNbFEXpXYFb0e9NnGfF44ywf1f69c601lxs02/BU/4iEdfhVIfTY4erA4QCUUZPNvXJTSpOFW7fT9uq+7FO/zIZyx8idLSS4NGdRP1taM0WTH4/0UiIqLeFUOteosH0fEMnRE/0qLazoihVQFWCYhH9hNGsYdq5Nta/3Z5+Fa00Ouyzv0HwaCX+uo9SHU2vRCNQW+5j7HRzv0i+cKwC1qYn8GW8hXHkfAyDJqIxZaDVajCFw6DRobUORqM14D/wCd7Kl+NSa1uIVOlJbeeldNznHcopw9WKonwlznGJPmzqYhue9nBaJgbLxC+gtQ7Gub5vL0+v2ebjottzMFo0n1XH6g/C7fvxnlB60uFw4HQeT7Ia9IMmYp3yJTKWPYBr3aNxr7stRLLEWmTjh8BHwBeBfDq2FTzxnxAA2LK0TFlkZavqIppmOaGvLSvqSsP+IF5XhLwp5lSHkkRRQk07aV/7IMH6UhyLfoTOMTLVQQnRK7H2fL8FfFtRlP9NZDCi7zvn8gyO1ATZV5le93o1Rjv2OXfi2/ten1lW1KUo1Jb5GFuU5tXDEiEaxrP9OTRaPfZzfkD7xz+WIWjR58Q62zkL+GciAxF937gZZoaNNbLurfSrPWyb+R9EvE39qp5wbbmP4eOMmKx9f9Zzb7i3PUvE24St+I5UhyJEj8WafN8AzktkIKJvyxysY8EXMtj0rhNXa3ptoGAadzH6nEJcm/6vX+2kc/RAEHdbmDFTB9LQ8wmiYdybf49+8ERM+eenOhoheiTWYecS4EFVVacB24CTdgBXFOWv8Q5M9B1Gs4ZlN2Sxb4efXRvSawhUn1OIdeqXcG16goj3aKrDibvach/5Rea0rSKWaBFvE56y57EV3UKgfgtRX0uqQxIiJrEm3yeO/X/azkZ0LCaR5DtA6Q0azv9yNqFAlJI30mu4WWsZjH3et/FVvUPw8KZUh5MQNWU+pi62YbZp8bkHZnWowP5PMI0+F1vRTbg2yrQU0TfEWmSjj5dxF4mg1cGyG7IwWbS8+1QToWAaTW/WmbDP/y6h5j14d/wj1dEkTPOhEK6WMGOmmdi1fmD2fgHc258lc9n/YBgyg2DDtlSHI0S3JKmKXtFoYMnVmWTl6vng2Wb86bTWVKPDPvc/QaPBteUPpF+lj/iqKfMxdtrA3pov4qrHV/UvrEU3g9aQ6nCE6FbMyVdV1dtUVd2qqmq7qqpjjz12t6qqVyUuPJGWNLDwygyGjjXy/p+a8bSn03CnBvvsb6KzD8NZ8ksIpV+hj3ir3e5jaL4Bi2Ngv5f27nkLtDrM4y9JdShCdCumYWdVVf8DeBj4DfAj/r3/VyNwFx0bLsRynv8DPg9kAk7gFeBuRVECXb5QpJW5lzgYPcnMe88042xOr9nD1uKvoB9USPuaB4j6WlMdTlK0HAnR3hQmf5qZHSUDuO5xOICn/EXss75OYP8nRLxNqY5IiDOK9a3yt4CvKYryAHDiFjCbgak9aO9xYJKiKBlAMTADuKcHrxcpVjjXwsS5Vlb8uZnWhvTaDcgy9XqMw+fg/PQXRDwNqQ4nqWrKfORPG6BLjk4QPLyJUPMerNNuSHUoQnQp1uQ7HtjQyeNuICPWxhRFqVQUxX3CQ9Fj5xZ9QO5oA/M/l8Ha19poOpheiddceDnm/PNwrvsVYeeBVIeTdLVlPobmG7FmDuyhZwB32V8wDJuFPndaqkMR4oxi/U09TOdJcgFQ3ZMGVVW9V1VVJ9AATAdkbUAfoNPD4qsy2bXBQ21Zet1HNY1VsBRegXPDbwm3DMxdLlsbQrQcCZI/UAtunCDiOoxv7/vYim4CjS7V4QjRqVjX+f4F+LWqqtfS0Vu1qKp6KfALOu4Dx0xRlIeBh1VVnQzcDNR3dbzD4SAYDJ7xuYEq2ddetNyATq9ld0lqv+6ntq0ZOhfd5JsIlz+DxbcP+vHPRHdf90O7ohQU29hf1r8STq9+3g6paPMWkTn5ciL71fgHlQS9/T0zGGS2d18Qa/J9gI7djHbQMdlq+7HHnwV+3ZuGFUXZoapqKfAcoJzpOKfT2WnyPXmrsYEl2deeMUjH+DmD+eDZFlqbUzc37tTrNgydiX3yzbhLnyGwf23K4kqGWL7nuzbpmHpuLhqjh/am9JoI11u9/1l3Yix7EVvxV2iv/qjPTb47m99xSb59Q0zDzoqihBVFuZWOoedrgeuBQkVR7lAU5WwWUeqACWfxepEEsy5wcGC3n/qa9JmUrssah33uXXgqXur3iTdW7U1h6msCTJgzsNf8Hhc4uI5Qax3WKdenOhQhThNrzxcARVFqgJreNKSqqh24BngdaAOmAf8NvN+b84nkGDRST95UE2/9b/os29CYs3HM/y7+2g/xV3+Q6nDSyu6NHuZdlsFW1UWkf3R+z4pn+5/JWPYA/rqPCDXtTHU4QnzmjMlXVdUfAb9RFMV77OMzUhTlf2JoKwrcQMcwtZGOCVf/AH4Se7gi2YrOtVOz3Zc+y4p0Jhzzv0uorQ5PxUupjibt1FX4mP+5DPImm6ktT6+JcakQdh7At/c9bLO+Rvuq+4kG3d2/SIgk6Krn+1XgScB77OMziQLdJt9jS4wu6FHRu8GeAAAgAElEQVR0IqXs2Trypph45/fp0+u1Tb8Fjc6Ie9MTEE2nylrpIRyCqq1eCudZJPke493xKoZBE7HN+hqu9b+hv5cbFX3DGZOvoihjO/tYDByTF1hpqAvSdCg9er2aofMwjpxP+8c/JhoauJsIdGfneg9Xfmcwg0bo0+Z7l1LRMK5NT5Bx7k+xFt2Mp+wvqY5ICNlYQXROZ4AJsy1Ufpoew3Ra6xB0E6/DU/YCYefBVIeT1pxNYerKfRSda+/22GHjjCy5JpOic21o+9cKpZNEvE041z2CcfQibMV3yPpfkXIxJV9VVX+nquppe/mqqvqfqqo+Gv+wRKrlTTYTDkXZv9Of6lAAsM28g2jzTvx1H6U6lD6hbLWbvKkmcoaf+c7S8AIjF9ySTTQKE+dbWXpdVhIjTL5wWx3ONQ+gz51CxrIHMYyYBzrTsWc1oDejMWehMXT/pkWIsxXrbOcvAp3tXlQC/AD4XtwiEmlh/CwLNdt8aXFb1TjyHPRZ+YTW/SzVofQZzYdDVJd2TL569+nm057PHW3gvJuyKF3pomy1G3uWjsu/NYiCmWb2bu2/94rDzgO0ffQjLIVfwDbjVrRGB9GgF/QmNJp/90XCnqP461bhq/oXRDov8iPE2Yg1+ebSsYPRqZqAIfELR6QDa4aW4QVGNr+fBkVM9GasU6/Hu/MNDIG2VEfTp2x+38mV3x3MpHOs7Fz3792OsofqUW7JZuc6D2WrO24ruFrDbFVdzLnYQW2Zj3B/vlUc8uGt/DveHa+gc4xCY7QTDfmIBj1Ewz40OiP6QZOxFF6OceQ5uNb9SnZIEnEX6z3fA3TUcT7VAuBQ/MIR6WDcDAutDSGaD6f+L7Cl8AtEQ1581bIcvKe8rgifvNbG3EscjCvuqPk8JM/ARbfnUFvmY/P7rpOO37XBQyQME2ZbUxFu8kUjhNv3ETpaSbi1moi7nqivlYi7gcC+j2n76EdE3A04Ft2HxpSZ6mhFP9OT2s6PqqrqBVYce+xCOtbsPpmIwETqjCs2s3dr6mcTa+3DMRdcjHPdryAqFSN6o67CT8mb7Sy6MpO5lzgwWbVUrHWz+QPXacdGwlDxiZspi6zs3OCRFTlhP66Nj+FYcDeO+d+lfc0D8nMo4ibW5PsQUEBHUYzjv5Ia4EVAbsT1I45BOnKGGfiwPPW1cG1FXyZ4eAuhxopUh9KnVW3xcnCPn9xRBloaQji7qPtctcXL7AscDB9r5HB1+pQTTZloGNfG35Gx7CEsk6/CW/lyqiMS/URMyVdRlDBwi6qqDwAzjz28RVGUgbl/Wz82ZoqZoweDuFpT+w7fMHwO+pwJtH14T0rj6C+8zgj7dnQ/cz3gjVJb4aNwrkWS7zHRoAf3lidxLLyHYH0poebdqQ5J9AM9re1cBVQlKBaRBsZMNbGvMsWzXXVGrNNuxLvnLZnokgK7N3q48LYcTNZ2/J6BPvbcIdS0E3/1CmzFX6Hto/tk+FmctWTWdhZpzpqpJXe0kbWvpnZWsWXC5yESxlf1bkrjGKiO1AZxtYQpKLZQ+amn+xcMEJ5dr5E1cj7mcRfh2/uvVIcj+rik1XYW6S9vspnWhhBtR1P3rl5rG4J5/GW4NvxO1lemUNVWLwUzJfmeJOTDU/EStuLb8R8sIeprSXVEog+T2s7iM2OmmqirSO2Qs3XaTQQbygg2bEtpHAPd3lIvsxQ72cP0tNSnfslZuggcXIdpzHKsU76Ee8sfUh2O6MPOuM5XVdWwqqpDjn38J1VVHckLSySbyaphaL6RuhTe7zUMLcaQOxVP+Yspi0F08LRFOFwdYPxMS6pDSTue8hc7qq5lT0h1KKIP66rIhhc4XuT0FsCc+HBEquRNNuNpi9Ccql1wtAas027CV/UOEU9DamIQJ6na4mVcsRmNbL9yknD7Pvx1q7AW3UTHiksheq6re77rgddVVd1Ax0/Y8SIbp1EU5T8SEZxInrwpppT2es3jLwWtFu+ef6YsBnGyukof51yewchCEwfSZIONdOHd+SqZ5/8KY95iAvvWpDoc0Qd19Z72FuATIJ+OSVXjgAmd/Buf2BBFoumNGkYUpG6JkdYyCMuEz3cMN4dlbWm6CAehttwnQ8+diAZceHe9hnXytaCXQUHRc11NuDoAfBNAVdUIcKWiKDIe2A+NnGAkGIjSsC81s4ut024k1LyL4OHNKWlfnFnVFi8XfSUHk0WD3ytrfk/kr1mJacxyLIVX4K38W6rDEX1MVxOuqlVVHXTs058CpxeDFf1C3mQzB3b5U7J9oGHIDAxDi3GXPZ/8xkW3GuqCuNvCjJ0uvd/TRMN4yl/EXHARWtuwVEcj+piuhp2HA8e3N/kx/558JfoRjRZGTUrRkLPWgHX6zfiq/knEVZ/89kVM9m71Mn6WJN/OhBrLCR7ZhnXaDakORfQxXU242g78UVXVj+mYcPUdVVU77f1Khau+a2i+EZ1Ow8Gq5E+osRR+HgDv7reT3raI3d6tPmYqDrKG6GltkDW/p/JU/JXM5Q9jGFJEsKEs1eGIPqKrnu/tQAi4lY4JVzfRUenq1H93JDZEkUh5k00cqvITTvLtXq1tGObxn8Oz/S9SySrNuVrDHN7rp2CmTCzqTMTdgK/6PazTbgRtj8rliwGsqwlX5cCl8NmEqzky4ar/yZtipnRlkm/na7TYZ/0HgfotBBu2J7dt0StVW73MvtDBlhWulMwNSHfe3W9hHHkOlsnX4K14KdXhiD4g1uXzY4HGRAYiki9nhB5rhpb9O5N7v9dS+AW0lkF4tj2X1HZF79VV+DGYNIwYb0x1KOkp5MO96feYx12IYcj0Hr98yBgDi6/KJDNXl4DgRDrqMvmqqvo9VVXNiqLUKYoSVVV1vqqqxhOet6uq+ljiwxSJMGaKmYa6YFK3jdPnTMBceDmurU8RDcoE+r4iFIhSV+GXNb9dCLXswbvjVWxz7kSXMTrm1xlMGpZfn0VunoFLvjoIe7Yk4IGgu57vI0DGCZ+vAEad8LkNuDPeQYnkyJ9mprY8eb1ejd6CbdY38FV/QKixImntivio2uIlb7IZo1lKKp6Jr+odAgfX41hwD7rsgs4P0howDJ+Lbc6dOBb+F4UXn0c4ouON3x2lvibA+TdnoTclN26RfN0l31N/y+S3rp/IGa4nY5AuqbsYWad/mWjIg3fHK0lrU8RPfW0ArytCfpFMvOqKZ9uz+A98QsaiH2GZfA06x0g0pkwMQ6ZjnfEVsi7+X2zFXyEa9BBsLGd0fhOH3ediGv8F1r7aRjgE8y83SU3tfk6m5g1Q+UXmjj+mzuTMnjGOXIBxxDzaPv5viMhylT4p2jHxavwsC7s3dlrmXQAQxVvxEqGjO7BMvBJL4eUdjwa9BBvKcG99muCRbRAJodXB4OyhlL3pwTz+e/j1Fj584WXmXpyNTqchFJGqYv2VJN8BamyRmbLV7qS0pbUMxjrjVjzlfyXiPJSUNkVi7N3qpfg8OxmDdbQfDac6nLQWPFJK8EgpGr0Vjd5MxN8G0ZO/ZoNGGtBooL5sN9Q+QsbCe/B4Gtny7gZCQUm8/VksyXeuqqotxz7WALNUVT1eSy0nMWGJRBo0Uo8tM1lDzhpss79OqGkX/tqVSWhPJJKzOUx9Tcc+v1tWxDZhrmipjSkLrBw9GGTtP9qSOsEvHURDHqIhT6fPDcs3cvRAkHAIaNmLe+sz2GZ9nfCWI+AsT26gIqliuavwFrD22D8r8PIJn7+VuNBEooyfaeFQVSApfwTNhZ9HZxuKe+szCW9LJMferV4KZlrQxjApt3CuhelLbWxRXRjNWpSbs+Ve5gmG5hs5UvvvnbwChzbgr/0Q3bTbQSezrvqz7n4NxtKxleDYLv6NS2SAIr50ehg3w8KezZ2/E49rW9kFWCZeiXvrU0QD7QlvTyRH9XYvOr2Gcd1stmC0aJh9kYP17zjZs8nLhy+0YM3SUXSuLUmRpjeNpmN974nJF8BT+XfCNf+S7TX7uS6HnRVFqUtWICI58iabiUZhf6I3R9ebsc/6Bv6alVLvtp8JB6HyUzdFS23sLfUSPcMAyvRldtytYfZu6Zic5fdG2fDPdhZflcmezd6kTfZLV9nD9eiNmtO38owEidavo6Oqr+ivZABogBk/28LeUi+RBM+VsU27iWgkgKfy74ltSKTEznUeLA4tY6Z1vuzInq1j8jlWNr3nPCk511X4aa4PUXyebJI2fKyR5sMhgn5JsgORJN8BxJ6lY0SBkT2bErtMxDB8LsZRC3Bv+j/ZNKGfCviilK91M+ciBzrD6c/PusBOfU2AQ1WnD51ues/JhNkWMgcP7EpOwwtMHE7BbmIiPUjyHUAmLbDSsC+Y0G3hNKZMbMW34al8hbDzQMLaEalXscZNJBJlxrKTe7GDRxnILzKz+X1np69r3BfkwG4/xecP3N6vVgdD8w0c2iv3dQcqSb4DhMGkoXCOhYpPEru211Z8B+G2/fir309oOyL1wiH49I12pi2xMWZax8xco1nDuddmsmu9h+bDZ36Tt3WFizHTzOQMH5ilBobkGdFqNTTsk+Q7UCXtJ19VVRPwOHA+MAQ4DDyhKMpvkxXDQDZhtgW/J8L+HYkb5jKNWYZ+UCHtH/0ImSwyMNRXB1j3djtLr83iwAw/OcMNeNrDbHqv817vcS1HQtSW+Zh5gZ2Vf2lNUrTpY+x0Mwd2J38fbZE+Yk6+qqouBS4EhnJKj1lRlK/E2Fb9sXNUA9OB91VVPawoiszKSSCNFiYvsFL5qeeMM1PPltaai3Xajbi3/5mItykxjYi0tHujl5b6EGOLzNTXBNi10dNRNKIbW1e6uPLbgxkyxkBDXXpnIYtDS/40M4f2+Gk7y8peGi2MmWqm5K22OEUn+qKYkq+qqj8EfgHsAg7Si26Noihu4L9PeKhUVdV3gEWAJN8EKii2YDBp2bM5cROtbDNuJXh0B4H9axPWhkhfjfuDNO7vWQJ1NoXZs8XLrAscvPdMc4IiO3s6PVx4WzZGs5bZFzlY80ordRUnjyAZTBpGTzJhtGg5eiDI0QNn/lqMLTKj0cCBXTLZaiCLtef7LeDbiqL8b7waVlVVDywGftnVcQ6Hg2Cw8x9kh8MRr3D6nFivXaOFmedb2LM+hMVkhwQUzdEMnYMup5DQ+gcS/j2R73n/sncDXPQ1AwVFWTTUdt6jTPV1j5upx2TW8cEzXvKm6ln6pSwq1gSp2hjElqVh3EwDY4r0BP1R/O4o8y7V0lIfoeLjAI37Tl7LrNXBTMXC3i0hrGYHdLFBVG+v22DoZPq5SDuxJt8s4J9xbvsxoA34S1cHOZ3OTpOvw+HA6ez6vlJ/1ZNrL5xrQauLUrq6OSH3lzQGK5kFV+Hd+Q98R/fFv4ETyPe8/1270wk710WZvMTI3rLT7/2mw3WPmT6IHevctDa7aV0DTUeMLL4qk6JlRgAO7/Wz+pVWDuz0E42CNUPLtCU2Fn/JyoHdfja966S9KYxWB4u+mEk0GmGL2tLlxglnc92SfPuGWJPvG8B5wB/j0aiqqr+mo9d7nqIoMt0vQfQGDTOW29n+sTthEzssU75ExNeCr/qDxDQg+r2y1W4K51rIm2JiX2XPh2J1elh8dSbDxhrZs9nbseFDnOY22LN15Aw38OGL/35jcHB3gFcfaSRrqB5Pe+S0Sl2e9ggb3nGyc52HORc7uOLbg2ltDGGxaQmHYMWfm2XHIhFz8i0BHlRVdRqwDTgpYSqK8tdYG1RV9bd0zHg+T1GUo7G+TvRc0VIboWCUXRsSU8dZl5mPKW8p7Wt+BtGBXSpQ9J7PHaHyUw+zLnCwf4e/x5MCZ1/oYNAIA5vfczH7Yjsmq5aSN+JTS3zURBMtR4K4Wk4eEg+HoOlg17PK2pvCfPhiK9nD9OSONhDwRjmw208oIIlXxJ58nzj2/7c7eS4KxJR8VVV9jI4e9HJFURpjbFv0gj1bx7TFNj56qTVhpSStU68ncOBTwq3ViWlADBgVa91Mmm9l7Awz1aWxb3VpzdQycb6VFX9uob46wNFDQS65I4eAN8Lm92Pb8rAroyeaznpiVEt9iJb6xBW2EX1TTMlXUZSzLsahquoYOiZu+YEaVVWPP7VGUZRLzvb84mRzL3FwqNqfsBmVhiHT0eeMp23lUwk5vxhYAr4oZavdzDzfTm2ZL+Y3jIVzrDTXB6mv7hiMaz0SQv1LCxd+JRufO0LF2t6P+ugNGoaNNbL947NP4kKcKmlFNo7tkKRJVnsD2fACI6MmmnjzsUSN6muwTL0OX/UKWdMr4mbnOg9TF1mZMNvCrg3dL4vTaGD8LAvbV52cHBv3B1n111bOuykbi13H5g+cvborMqzASDgUPX3XISHioCdFNpYD9wFT6RhqrgAeUhRlVWJCE72h0cK8yxxUfuqmvSkx483G0YvRmrPx7XkrIecXA1MoGGXbKjczltup2urtdpLgsHFGzFYtNdtPH6Y+uCfAe880s+yGLAaPNLD6lVY87T3LwKMKTRys8st0BpEQMQ0nq6p6PaAC7cDDdKzNdXU8pX4pceGJnpo034rZqmX7qgTVcNYasEy+Ct/ut4gGEzORSwxcuzd6iIQ7fo67UzDTQl2l74xb8jXuD/L2402Ew1Euv2swIwuNPYpl5AQjB3fLYgyRGLH2fO8H7lcU5ecnPPZbVVV/REfVKqlQlQZMVg3F59vZ+C9nwvYINY+7EKJRfDVq9wcL0UORMJSudDHnUge7N5556Flv1DBmiolVL3VdF9rnjrDizy0ULbFx/k3ZbP7AGdN94MzBOhw5eg7ukSpUIjFinUg1Hnilk8dfPvacSAMzFQfOpjBVWxNTRlJjsGMu/DzeHa/IPr0iYfZu8+J1hplx3pm3HMybYiIUiMa2JV+0Yy3xyudbmKk4mL7c1u1LxhSZaTwQOG0NrxDxEmvybaRjI4RTFR97TqRY9lA9hXMsrP9ne8I2FLIUXk7E3UjgQEliGhCCjiXj695qZ8oCK5lDOv8TVTjHyt5tvh7djz24J4D65xamn2un6NyuE3BBsaVHS56E6KlYh51fAJ5UVTUXWEPHn/elwAPA0wmKTfTAvMsc1JT5elzcPlZaay6mcRfgXPdrZLtAkWhHaoNUb/Mx+xIjh37PSUuPckcbGJJnYO2rPd8VqL4mwMoXWlBuziYcilL56elD0EPGGHBk6zqdyCVEvMTa870feA74HVBGx0zn3wB/An6ckMhEzEaMNzIkz8jmDxJXA9cy6WpCRysJNZYnrA0hTrThX+0YLRrmfy7jpMdnXWinersPV2vvZvMf3hvgo5damX2Rg4nzLKc9P2O5neptPnxuGXIWiRNrkY0Q8ENVVX/Mv+/xVimKkrg96kTMZl3gYOcGD562xPyx0GXmYxx1Du2r/rv7g4WIk4A3SslrfpbeaAYNlK92M/kcKznDDKx++ezWsB/Y5efjv7ey9EtZ6AwaKj/p6AFPmGNhyBgDbz4m69dFYvWoyMaxZFuWoFhEL4yebCJziA71LwlaWgRYp17XUUayPbG7FglxqraGCO8+3cySazK56vu5uFrDqH9pictEqH2Vflb9rZXFV2VSOMeKpz3MsLFG1rzSdlotZyHi7YzJV1XVp4DvKYriOvbxGSmK8h9xj0zEpPg8OztLPAkbIjMMKUKfU0jbyh8m5PxCdKf5cIg3H2vCYtfic0d6vPFCV/bv8PPao42Mm2HBZNWy6T0nzYelDrNIvK56vhNOeL4QmWWTdoYXGMnK1bPiuZYEtaDBMuU6fDVSRlKknteVmDeYfk+UHSVSMEYk1xmTr6Ioy0/4eFlSohE9Mm2xjapSb8J6vca8JWgt2fh2v5mQ8wshxEAVa3nJH6uqelq9N1VVLccmYYkkyx6qZ8R4I5VrE3SvV2fCOvlqvLvekDKSQggRZ7EuNfoJ0Fm5Geux50SSTVlkZf8uP21HEzMxxDz+UqIhP/6alQk5vxBCDGSxJl8Nnd/znQB0XVxVxJ3eBGOLLOxcl5geqcaUiWX8ZXgq/w5RmfUphBDx1uVSI1VVa+hIulFgk6qqJ/4l1gHD6Lzms0igvCl6fO5IbHVte8Ey+WpCbbUED29KyPmFEGKg626d7zN09Hp/BvyVjm0EjwsANcAbiQlNnMnYYj27N3sSMv9cl12AafQS2tf8NP4nF0IIAXSTfBVFeQhAVdX9wN8URZH9tVJs0Eg9mblaqjYnoriYBtv0W/HXrSLcWpOA8wshhIDY7/lW0rGD0UlUVZ2vquqc+IYkulI4x8rhvWE87fFfXmQaez5aS07HloFCCCESJtbk+79AfiePjz72nEgCrQ7GFpmpK4t/BR6NKRPL5GvwVPyNaDBxpSqFEELEnnynAp3NvtkCTIlfOKIrIwtNANTvjf8MZNuMrxBuqyOwf23czy2EEOJksSbfCJDRyePZPTiHOEvjppuprfCdtLdpPBhHLcKQOwX31qeRKqJCCJF4sSbOT4Hvd/L494GS+IUjzkRv1DB6kjnuG3xrzNlYi27GU/E3Ip7GuJ5bCCFE52LdUvB+4GNVVbcCK+noHil0FNlYlpjQxInyJpsI+iPUVwew201xO2/HcHMN/toP43ZOIYQQXYup56soymZgPlAOXAJcSse+vucoiiKVGJJg7AwzNWW+uG6nZhp3EfpBE3BvfQYZbhZCiOSJteeLoigVwM0JjEWcgcmiYeR4E+9+1By3c+qyxmKdeh2uTY/LdoFCCJFkMSdfAFVVjcAQTukxK4qyL55BiZONmWbG3RamcX8wLufT6C3Y59yFv/ZDgoc3x+WcQgghYhdT8lVVdRzwR2AJHeUmjzu+4YIu/qGJ48bNsFAdx4lWtuI7iAbdeCpeits5hRBCxC7Wnu8zQCZwI3AQuUGYNNYMLUPHGFj3VntczmfKPw/DkCLaPr4fIvEv1iGEEKJ7sSbfecACRVHKEhmMON3YIjOtDSFaG84+Ueoyx2CddiPurU8TcTfEITohhBC9Ees63/3I0HJKjJ0enyFnjd6Cfe638O9bTeDgujhEJoQQordiTb73AP+jqmpOIoMRJ3MM0jF4lCEuhTVsM79KNOjBU/7XOEQmhBDibMQ67PxrYDhQr6rqITr28v2MoiiF8Q5MdAw5N+4P4Go5u3qSpnEXos+dSvuq/4ZIfGZMCyGE6L1Yk+8LCY1CdGrsdDN7Np3dvr267AKsU6/HtekJIh65zyuEEOkgpuSrKMpPEx2IOFnWUD1ZuXpqy3s/5Kwx2DrW89aoBA9LITIhhEgXsiNRmho73cyR2iCe9kivz2GdcRtRfzueir/FMTIhhBBn64w9X1VVd9NRu7lZVdU9dLG2N9Z7vqqq3gncAkwH1imKsqxn4Q4cY4vMVKzt/ab2xlGLMA4tpm3V/RCN//6/Qggheq+rYecXAd8JH8ejsMZh4GFgLrAgDufrlwaPMmDP0vV6yFlrGYx1+pfxlL9IxF0f5+iEEEKcrTMm3xPv8yqK8v/i0ZiiKK8BqKqaF4/z9VfjZpg5tDeA39Ob9zsabLO+RqhpF/66j+IemxBCiLMX0z1fVVU/VFU1q5PHM1RVlY1g40irg3HFFqq29G6Ws2ncRegcI3CXPhPnyIQQQsRLrEuNlgHGTh430bHZQsI4HA6Cwc7XpjocjkQ2nRIjJurQajW07DfgcBjOeFyn124ehH7K1YR3vIDdGAVj//v69MfveawG6rXLdfeMwXDmvxsifXSZfE8ZHh6lqqr5hM91wKVAQm8qOp3OTpOvw+HA6XQmsumUGDU5i+ptXtpaz3xtZ7p2x7RvEmysxLV3VQIjTJ3++j2PxUC9drnunpPk2zd01/OtpWOiVRTY2MnzEeC/4hzTgGWxaxk5wcQ7T/Z8c3vj6MXoswto+/DeBEQmhBAinrpLvsf3710NfAFoPuG5AFCnKErMZZNUVdUfa1MPaI/1pCOKogS6fuXAMK7YTNvREE0He7aDkcaUgXXajXgq/07E19z9C4QQQqRUl8lXUZRPAFRVHQvsVxSl9xUfOtwP/OSEz73Ax3TcUx7YNDBxnpWd6zw9fqm16GbCzoP4a2XumxBC9AWxTrj6Oh2J8ySqqmYCzyiKck0sJzm2ZOn/xdjmgDJyghGLQ9vjWc6GIdMxDp9D20f3EZ+l2EIIIRIt1vKStwCrT5yAparqQmAbMD4RgQ00k+Zbqd7mI+DrQQLVGbFOvxXfnn8ScR1KXHBCCCHiKtbkWwy4gFJVVa9WVfU+YBXwFjA/QbENGPZsHaMKTT0ecrYUXgHRCN7dbyUoMiGEEIkQ665GDcBFqqr+Cvg7EAauVhRF/urHwZSFVo7UBWmpj32ilc4xCvP4S3Cu+7Xs0SuEEH1MzLsaqap6GR3Dz+uANuA7qqoOT1RgA4XJqqFwjpWy1a4evEqDdcatBA5tINRYnrDYhBBCJEas5SV/C7wOPAYspmMYWgNsO5aURS9NXmCjvSnEwd2xr7bSDF+ALmMUnvK/JjAyIYQQiRLrbOcvAucrirLm2OcHVVU9j44Z0K/RUWZS9JDeqGHyOVbWvd0e82s0xgx046/EU/kyUX9bAqMTQgiRKLEm32JFUU6q3qAoShR4QFVVNf5hDQxTFlrxeyI92jrQOu16op4j+GtlxyIhhOirYhp2PjXxnmJXnGIZUExWDdOW2NiiuojGWLpEnzsN48hzCO96CVnTK4QQfVeXyVdV1XZVVQef8PmbqqoOO+HzoUBjAuPrt4qW2nE2h2Pv9erN2Ipvx7fnbXAdTGxwQgghEqq7nq/9lGPOA6ynHKOJa0QDgC1Ty+T5Vja/74y5A2udej3RoAfvrjcTG5wQQoiEi3mpURdk/LOH5lzs4Mi+AIeqYpvhrM+diinvXNxbn4ZoOMHRCSGESLR4JF/RA8MLjIyZamZ9jDOcNQYbtuI78FW9Q7itNrHBCSGESIruku/xvXxPfUz0glYH53w+g4pP3LQ1xnIlqe4AAAvoSURBVNaDtRXfTtTfhnfn6wmOTgghRLJ0t9RIA7yiqurx8VEz8BdVVY9vvWNMWGT90NRFNvRGDds+csd0vCn/fPS5U2lfdb8MNwshRD/SXfL98ymfv9DJMTVxiqVfyxisY8Z5dta80koo0P3ggS5zDNZpN+De8hQRj0woF0KI/qTL5Ksoym3JCqQ/02hg8RczObDTT12Fv/vjTZnY538Xf93HBA6tT0KEQgghkkkmXCXBlEVWHIN0lLwVQzlIrR77vG8TcdXjKX8x8cEJIYRIOkm+CZY5WMcsxcG6t9rxe7obbtZgK74DrTED18bH5T6vEEL0U5J8E0irgyXXZlFX6YtpuNk67UYMQ4pwrv810WBPthgUQgjRl0jyTaDZFzowW7Wse6v7Nb3mwisw5Z2Ls+QRIq7DSYhOCCFEqkjyTZCRhUYmL7Dy8d9bCfi6Hm42F34BS+Hnca5/VAppCCHEABDrloKiBywOLUuuzmKr6qJxf7DrYydfg3ncRTjX/ZpQ084kRSiEECKVJPnGmUYLS7+URfPhIGVruiqmocFadBPG0YtxlvyCUPOepMUohBAitST5xtncSxw4snW8/X9NZy7EqTNin/V19DmFOD99mHCr1CkRQoiBRJJvHI0rNjNxrpV/Pd2Ezx3p9BiNKRPH/O+i0ZtpX/NTqV4lhBADkCTfOMkZoWfhFZmUvNVO08FQp8foMvKwz/8OEXcDzk9/STTkSXKUQggh0oEk3ziwZmg5/6Zs9mz2ULXF2+kxxlGLsBV/Bf++NXjKnpcCGkIIMYBJ8j1LBpOGC27Jprk+yIZ3nKcfoNFhLboJU965uLc/R2DfmuQHKYT4/+3de2zdZR3H8Xd7zunWdqcrW5kMtnHRbeiY3C8yBgy+ElAEo4LZFkQN/qFTiQMTLioXDSgEJAMUwpBEYoSA4FAuyte4CcLUZCzAIFx0sI0x2FbWdmt71p3WP55TOZRu62b7/M7l80pOmj6/Nfs82zn9/p7f73l+j0hJUfH9P9SmYM68ZvJ5WHZfG30DbvPW1o9nzDELqBnVTPtT15JvezOZoCIiUlJUfPdSTS2cfH4z2XEpHruz9UPbBNYdcAINh3+VHZtfZdvym/W4SBER+R8V373Qv5a3ZVKGJxa30rW1aMibHk3jzK9Qd8DxdK76LbnVnlxQEREpSSq+eyiVhtnnNbPvpAyPL25l63vvT5xK7zuDxsO/Tl8+R/uyq8h3rEswqYiIlCoV3z1QV1/DafP3oSFbyxN3v194azKNNMyYS93kWXS//hhdr/weenf9WEkREaleKr5D1DwhzZx5zeS6enn0zs2FvXlrqJsym4aPn09vd2sY7bavSTqqiIiUOBXfIZh6dD3Hn93E6he6WP6HdvI9kG75BA2HzaO2fjxdrzwc7u0OnO4sIiIyCBXfXciOS3HCOU1MmJLh2SVt/HtlN5kJM2mYeg7pcR8j958n6Xp1CX09u9pAQURE5INUfAdRn61l5uxGph/XwLrXciy5fRs92Vk0nTqH1JiJ5N5cyrYVd9DbtTnpqCIiUoaiFl93TwM3ARcAtcCDwAIzy8XMsTMTDsww7ZgGDp45mtZ3evnbnyayqWcWdZ86ilR3G7k1y8i98Vf6trcnHVVERMpY7JHvFcApwGFAD/AIcD2wMHIOqIGmcSnG759h4tTRTJo2mlENsP6tj/DMyuNozZ9IX7advndWho3uN73MzvcIFBERGbrYxfciYKGZrQdw96uB+9z9UjMbttlK4w/Zn7H7NZGuqw2vTA3pOqhv7KVhTC/1jXmamraRTufp7M6yuWMqL797KBvebqFz41vsaH2dHZufLDwOUgVXRESGV7Ti6+7NwGTguaLmFUB/+6APPs5ms/T0DL5mNpvNDto+fdYUJh3USj6fIt+bYkc+TX5Hiu7caLZ2jWJja4qtW1K0baol19ZOX+dq6Pon5HPUAnWFF9kxe9vdEbezvle6au03VG/f1e89k8lkhjmJjISYI9/+d1JbUduWAcc+pKOjY9Dim81m6egYZBch4Jl7l+9lxPKwq75XsmrtN1Rv39XvPafiWx5qI/5d/e+ksUVtzQOOiYiIVLxoxdfMtgBrgSOKmo8kjH7XxsohIiKStNgTrhYDV7r7s4TZzlcD9wznZCsREZFSF7v4Xge0AKsIo+4HCMuPREREqkbU4mtmO4DvFl4iIiJVKeaEKxEREUHFV0REJLqS31hhZ2vWMplM1a5nq9a+V2u/oXr7rn7v3c9K6Svl4tsEMH/+/KRziIiUoyY++FAjKSGlXHzXAVMAbSEkIrJnmgi/Q6VE1fT1aeMAERGRmDThSkREJDIVXxERkchUfEVERCJT8RUREYmslGc7D8rd08BNwAWEk4cHgQVmlks02Ahz91HAbcDpwATgbeB2M7sl0WARuXs98ALQYmbNu/vzlcDdPwdcA0wjbL15s5ndmGyqkefu+wO3AqcANcDThM95Rc3gdfcFwIXAJ4HlZnZq0bExwB3AOUAOuBu43Mw0S7YClOPI9wrCB/IwYCowA7g+0URxpIENwBmEZQTnAZe7+5cTTRXXtVTR8gl3P5Pwy/f7hL2vpwOPJxoqnl8AGeBgYDKwDbgr0UQj423gp8DPBzm2CNgXOBA4DvgS8J140WQkld3IF7gIWGhm6wHc/WrgPne/tJK3JjSzbcAPi5pWuvujwCzg/mRSxePuRwGfARZSBf0t+DHwEzP7S+H7duDFBPPEdAjwMzPrAHD33wB3Jhtp+JnZQwDuPqW43d0bgHnASWb2HvCeu98IfItQlKXMlVXxdfdmwlnwc0XNKwijgsnAm0nkSkLh8vtJwA1JZxlphb7eBSxIOkss7t4IHE04sXwJGA88A1xsZmsSDRfHzcD5hRPMPOE206PJRopqGlAHrCxqWwHMcPeUmeWTiSXDpdwuO2cLX4sfmbZlwLFqsYjw7/DrpINEcAnwvJktTTpIRPsQ7nVeSBjxHwy8C/wuyVAR/R0YB7QSPuPTgMsSTRRXFugsbMPabwuQAuqTiSTDqdyKb0fh69iituYBxyqeu99EGPWeZWbbk84zktz9o4QR76VJZ4ms//28yMzeMLNO4ErgmMJkpIrl7rXAk8CzwBhCIXKq5343hP//hsJVn37NhKsAXclEkuFUVsXXzLYAa4EjipqPJJwRrk0kVGTufgth0tXpZrYp6TwRzCZMOlnl7huAh4Amd9/g7icmG23kmFkb4TZK8czWapnlOo4wyWiRmXUWTjxuBY5395Zko0XzKrAdOLyo7UjgJV1yrgxl92xnd/8R8HngbKAHWEKYor8w0WARuPsi4DRgjpltTDpPDIXlRcVXOk4E7iHM/G2t5JG/u19GmHTzWWAj4T7osWZ2bKLBInD31wjLCK8pNF0LzDWzycmlGn6FkW0a+DZhSdEZQK+ZbXf3XwETgbmEUe+fgdvMTBOuKkBZTbgquA5oAVYRRu4PEJYfVTR3P5CwzCAHrHb3/kNPmdlZiQUbYWbWRdFlNndvBfrMbENyqaK5gXDvdwXhvf408MVEE8VzLmH5zVuEe98rCcWp0vwAuKro+y5gGXAqcDHwS2ANYRS8mHAFQCpA2Y18RUREyl1Z3fMVERGpBCq+IiIikan4ioiIRKbiKyIiEpmKr4iISGQqviIiIpGp+IrsgrsvdffFSecQkcqi4isiIhKZiq/IMHH3GnfPJJ1DREpfOT5eUiQx7n4E8BhwP/A8YZ/hTxOeuzwD+ALwx8QCikhZ0MhXZIjc/XRgKXCLmX2PsMtQLeEZzJcAhwL/SCygiJQNjXxFhsDd5xJGud80s3uLDtUAC83sqWSSiUg5UvEV2b0zga8B55rZYJeU/xU5j4iUOV12Ftm9F4HVwDfcvW7AsbyZdSeQSUTKmIqvyO6tA04GpgMPu/uohPOISJlT8RUZAjNbT9jg/CDgEXevTzSQiJQ1FV+RITKzDYQCvB9hOVFDooFEpGzV9PX1JZ1BRESkqmjkKyIiEpmKr4iISGQqviIiIpGp+IqIiESm4isiIhKZiq+IiEhkKr4iIiKRqfiKiIhEpuIrIiIS2X8BY6CHEXKMuaoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "dark" }, "output_type": "display_data" } ], "source": [ "#let us generate plots of the various quantities as a function of kr parameter\n", "#this has been verified with the following source\n", "#http://www.thermopedia.com/content/956/ (see figure 1)\n", "\n", "#[1] O. Peña and U. Pal, \"Scattering of electromagnetic radiation by a multilayered sphere,\" \n", "#Computer Physics Communications, vol. 180, Nov. 2009, pp. 2348-2354.\n", "# [2] K. Ladutenko, U. Pal, A. Rivera and O. Peña-Rodríguez, \"Mie calculation of \n", "#electromagnetic near-field for a multilayered sphere,\" Computer Physics Communications, vol. 214, May 2017, pp. 225-230.\n", "\n", "num_pts = 1000\n", "kr = np.ones((num_pts, 1), dtype = np.float64) \n", "kr[:,0] = np.linspace(0.25,10, num_pts)\n", "\n", "dia = 2000\n", "\n", "m_water = kr - kr + 1.33 + 0*1j\n", "m_glass = kr - kr + 1.45 + 0*1j\n", "\n", "\n", "terms, Qext_water, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m_water)\n", "terms, Qext_glass, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m_glass)\n", "\n", "#qext_water = [ps.MieQ(1.33,np.pi*(dia/ind), dia)[0] for ind in kr]\n", "#qext_glass = [ps.MieQ(1.5,np.pi*(dia/ind), dia)[0] for ind in kr]\n", "\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "ax.set_xlabel('kr')\n", "ax.set_ylabel('Extinction Efficiency')\n", "plt.plot(kr,Qext_water, label='water')\n", "plt.plot(kr,Qext_glass, label='glass')\n", "\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "\n", "\n", "#All these plots have no units, it is the ratio of the actual cross section to the physical area. \n", "# noticing that the kr parameter is an abstraction, we will train the network for extinction efficiency as \n", "# a function of wavelength (not kr!). \n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:10:01.701577Z", "start_time": "2018-09-18T17:10:01.350524Z" }, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA58AAADnCAYAAACZiOJNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XmcXFWd///XvVXV1Vt1d0JIWAJhFwgJCYFASEhCOICIgoLCiKKOOqMjonxdRtyZ3zgK4xfFsOogICPzE3WUVSA5RNawJoQAYQ0hZIWkl3T1Wtv9/nGrk0qn966938/Hox637n5OOqfu/dxz7jmO53mIiIiIiIiI5JJb6ASIiIiIiIhI+VPwKSIiIiIiIjmn4FNERERERERyTsGniIiIiIiI5JyCTxEREREREck5BZ8iIiIiIiKScwo+y4i19hFr7c2DbHOFtfatfKVJpJhYaz1r7acz5t+x1v4gY37QMiQiw6eyJ5IdvctSjs/1OWttIh/nkrEjWOgEiIjk0b5AywDrzwN0oRXJPpU9kWGy1lpgozHmcxmLdytL6eDwi8aY23KQhDuBB3JwXBnDFHyKyJhhjNk6yPqmfKVFZCxR2RPJjsHKUpbP1Ql05ut8MjYo+CwS1toq4FfAhUAK+P+BHcAnjDGHWWsd4JvAV4DJwAbgWmPMNQMcMwxcA1yUPuYfGPjJs0jJs9bOA64CpqcXvQ38qzHmIWutB1xsjPl9P/s+ArxljPlixrJLgEuAQ/HL5GPGmI+n10WA/4tfaxMBXga+Z4xZkl5/ELAOv1xfDJwGbAV+bIz57yxmW6Tg8lz2LgK+DhwJxIFngP9jjHkjF3kTyTdr7W341wystZ9NLz4V+DvpsmStfQcIALdaa28FMMY41tpxwLXAfGBv4F3gN8AvjDFexvEnA38Evg+MSx/7i8aYbeltPgfcbIwJpucHPa7IYPTOZ/G4CjgX/wb1JPwL7Vcy1n8F+HfgSmAq8HPgSmvtFwY45pXA+cBngDlAO/6FXKQsWWsDwD34N6LHpT9XAB0jPN6/4ZfNG4BpwAeBVRmb3AKcCXwamAk8CdxnrT2y16GuBP4b/6b8j/g3CoePJE0ixagAZS+Mf008DjgdSAL3W2srRpYDkaLzdeBx/GvGvunP8l7bnID/f/+yjG3ALx8vAR8FjsYvK/8GfK6P/U8FzsYvYzPwH6j2Z6jHFemXaj6LgLW2BvgS8BVjzD3pxd+11p4KTEjPX45f0/mb9Pyb1toP4D+t+m0/x/wX4FJjzN3pxd+y1i4EGnKTE5GCq8N/enuPMebN9LI3B9i+X+ky9K/AD40x12WsWplefxjwceBsY8xD6XVft9aekt7v8xn7XGeM+WN6vx8AXwUWjTRtIkUob2UPwBhza699Pgc04t9MPzmS84oUE2PMDmttDOjMbGrrvwa6c5tt6fkdmdukv1+Vcbh11toT8FvCZZadGPA5Y0x3+tg34ge9/aVpqMcV6ZeCz+JwGFABPN1r+VPAR6y1dfhNIx7rtf5R/JvdamNM76fLh+I/oer9lOwJ4MNZSbVIkTHGNKd7zHzIWrsMv4z81Rjz+ggONxWoBJb0s/7o9LR3uXwMv6VBpp01NsaYhLX2PWDSCNIkUpTyXPaw1s4AfoxfUzMBcNKrpqDgU8Y4a62L/wDnH/DvHyuBELC+16av9gSeaZsY4No0jOOK9EvNbovLYO3le693+txq93Vqgy9jijHmn4BZwFJgAfCytfZLozjkcMuQ08c+sT6Oqd9fKSv5KnvW2mr8wNTDb2EwG7/G08N/kCsy1n0T+C7++5mn4z+kuZk9y0df16aB7i2HelyRfqnmszi8hf8DMAdYk7H8JABjTKu1diP+xfz+jPXzgXV91HpmHnNur2OenMV0ixQlY8zL+J3//MJaexPwz8Cvh3mYNUAX/judL/Wx/pX0dD7wt4zlpwAvDPNcImUhT2XvKPzOTr5vjHkVwFp7MgPfNIuUohh+h0LD3WY+8KAxZudrWVnqZyBXx5UxRMFnETDGtFtrfw38JN0c7w3gs/gX2G3pzX4GXG2tfRN4BP99sX+hnw6E0se8KeOYrwNfwO8Z8P0cZkekYNLvYf4TcC9+j9D74QeDKwfary/GmDZr7dXAFdbaTvzanCrgQ8aYnxlj1lpr/wTckK7dWY9fJo/Bf/9FZMzIZ9nDL2vdwKXp7Q7C79RLLX2k3KwDTrXW9vT4vGOAbR4AYsaY7fj3fBen+w7ZhN/x5IlA8yjTk6vjyhiiZl/F4zv4F+3/AZ7F77jhNvynvwA3Aj8Cvof/VPg7wOWZT5/6cDlwF34vm8/idzR0fQ7SLlIs2oHD8YcVegP4X/z3nr86wuP9EL9Tr6/h1+Yswe9ds8cXgYeA3wMv4rc0+LAx5rURnk+kVOWt7KVvrj+N3+zvFfzeOb+FP6SYSDm5GtiOf33Zhn+N6e2b+M3d17GrwuLf8d+7vhu//5BxwOIspCdXx5UxxPE8PSgsVulOG5qNMecXOi0iIiIiIiKjoWa3RcJaOw3/qe5T+C9uX4w/9tKHCpkuERERERGRbFDwWTw8/PfFFuM3h34N+Jgx5oGCpkpERERERCQL1OxWREREREREck4dDomIiIiIiEjOZb3Z7VVXXeUAk4HWbB9bpMDqgI3f+c53Ct5cQOVMypjKmUjuFU05A5U1KWtDKmsrVqwIAJH8JCmnorNmzUoOtEEu3vmcDLybg+OKFIMD8cewKzSVMylnKmciuVcs5QxU1qS8DVjWvv/9789Yvnz5L1paWsblMU050dDQ0HzyySd/4z/+4z9W9bdNLoLPVoA77riDeDyeg8P3LRKJEI1G83a+XCqnvEB55CcUCvGpT30KiueprMpZFpRTfsohLyMpZ9baS4DPAtOBp40xCwfY9hFgDpBZaA4xxrzfzy4qZ1mg/BSXIryegcraqJVTXqA88jPUsvbCCy98c8OGDXXAgDWGpSAajdatWrXqm/ijdvQpZ73dxuPxvP6A5Pt8uVROeYHyy08xUTkbnXLKTznlZZi2AFcCJ+AHloP5jjHmmuGcQOVsdJQfGSqVtZErp7xA+eWnPytWrAg3NzcfUeh0ZFNTU9PhK1asCM+aNau7r/UaakVEREqWMeYvANbaAwudFhERkWGq6urqqqAMaj17dHV1hYEqQMGnSDGz1u4HXAssABzgCeASY8zGgiZMpLz8wFr7I2A98EtjzO2FTpCIiMhYoeBTpHjcgD/80cH4T8BuBv4LOKuQiRIpI5cDa4BO4DTgTmtt1Bjz14F2ikQieW/+FYmUQ6eHuyg/xSMUChU6CSIyhin4FAGqIi6d0VShk3EIcJUxJgpgrb0D+HVhkySSPeEqh3jMI1WgxkXGmKczZh+01v4auBAYMPiMRqP9Bp9OqBovGYdU9oLTcuhoI5PyU1xKMvh0gzjBSrxYW6FTIiKjpOBTxrRAEGacVstRc2r4yy+20dFa0AD0F8AF1tr78Ws+LwbuL2SCRLJl30MrOOXj9bz0WDuvPtVR6OT0GHWBrzvlRwQi++OlEniJbrxkFyS68JLdeIkYXrIbkt14yRheMgbJGF4y7n9PxdKBawIvFYNkHC+VwAmHCIajkPLn/fUZUy+Z/u5P8crmVSGRPlUedjbhA+YSXX4Vqc7GQidHREZBwaeMWRMmh5h3fj2BINjfNRc68AR4EvgC0AR4wIv4TQP7peaAo1dO+SnGvLgBOGZhBYceF+S1p+JseiXQbzpHUiNjrQ3iX8uCgGutrQRSxphYr+0agJOBR/A7QVgIfAn452GfNEPr8qtwQzU4wUoIVuIEK3ECYZxgGCdQCYGK9PcK/3tFHW4g5H93QxAI4bghnEAI3BCOG8QJhIg4Qb+2JzC0fxMvlfSDUC+Z/p7yA1QvBel1npfauQ2et2s7z5/66/uaT2XMe7stw0vh0ccyzwP87d2KEJVdXUDGMXbu42UcI70sY93OY+9cv+u44KXP03tfL71v5rn6nnq9judP2f38vfcL1eCEdp3L6/f47EqTjErXW38jOO5QIvN+QPTpn5OKbi50kkTGlCuvvHLa8uXL3582bdq4iRMnVm3btq3zlltuWbd58+Y+OxUaiIJPGXMCQZixqJap82p4/bkOVjzURiJW2JsDa60LLAX+CJyZXnwF8ABwUn/7DdQcMBdKvblZb+WUn2LMS8OkIPMvqCcYcnjgv5rYtmHg/6sjbA74A+DHGfOdwKPAQmvtA8DjxpifAqH0dn9Ib/cO8E1jzJ9GctIeXlczya7m0RxiD3v8LZ2AH4i6IXADOG4wvazX9/QUJ4DjBsAJguPiOO6u5Tu/u+l16e9uAEhv67jgurvme7bH8fdxg+n9nZ3HdzLW7/zg+OuCQUIpL73e2XUOxwF6pj3HSh8DdjsnjoNDX+vS++22bvftnJ7vWTTSkeB3BvSQMd0VsO4KdmFXUJy5jb/P7gFv5rb+9omW9bSvuH6EqSxCqThtz/6KmhlfoP6UK2hbcQPx9/odw15EcuD444+fcOONN761bdu22Je+9KWDP/GJT0z+1a9+tXa4x1HwKWNKZm3nklub2bouNvhO+TEemAIsNsZ0AFhrrwW+ba2dYIzZXtDUiQyHA0fPqWbWGRHWvdTF0/e25uwBjzHmCvwHNX2tOyvj+zbgxJwkIte8JCSTfhNeSq8erXgejDgZge6ugBfICJ772safOunvNbW1tLd39LmdQ9/7+lM/DbvO1TtNGcEzjh+I7zweGdtkzGdulzH1YsXw751lXpL2F35DsnUDtbO/Ttfah+h89U9qdi7lx3FxK8fn5eXsVFdTfOeDsEE88cQT72/ZsqUb4Omnn2684IILpozknAo+ZUwIBOHYRbUcU0S1nZmMMduttW8Bl1hr/y29+FJgowJPKSVVEZd559czYf8Qj/25hfUvD7tFjkiOZDaH3WPNUPb2BWOkOsowuCsRXWsfING8lppZ/0Jo76m0r7qZ5I71hU6WSNa4leNDDWf8cno+ztWy5P+sTnVuH1ITuh07duzcrru7OxUOh0fUrETBp5S9vfYPMu98v+lfkdV29nYu8EtgE/4j7VXAOQVNkcgwHHh0mJM/Vk/T5jh3X7u9GN6jFpEylGh6g9a/f5+qqf9A3fwr6H5nGZ2v/QUv3l7opImMWqqrKd6y5P+szte58nGeTAo+pWy5Af/dzmNOqeGN5zt5/sFoUdV29maMWcOu9z1FSkawwmH22REOnVHFiiVR1izvKL22oSJSUrxEBx0v3kJs45NUT7uYevNzut68n651SyFZtA+ZRQbnpRhqbWQpUvApZWm32s7bmtn6ti5EIrkwYXKI+RfUk0x43HdjI81bE4VOkohkmbU2DFyH3wP7RGALcL0x5pp+tr8NuAjIvPieaox5LttpSzS+TusjP6TiwHlUfeBjVB56Fl1vP0T3uofxEkUzrJOIpCn4lLJSarWdIqXKcWH6ghqOPbWW157pYMVDUZKKO0XKVRDYCpwBvA1MBx6y1m4xxtzZzz43GGMuy0/yPGLvPk5sw3IqDphH1eFnU3XEOXRveILud5aRbN2Qn2SIlKnLL7/8pcz5l19+OXrZZZeNqMvpIQWf1tr9gGuBBfjvoj0BXGKM2TiSk4rkQk9tZ6jCZeltzWxRbadITtSOC3DKJ+qJjA9gb29m81sqayLlzBjTDvwwY9Eqa+39wFygv+Az/7wksXcfJfbuY4QmHUv44NOpW/gTki3r6N7wBLFNz5RnT8AiJWSoNZ83AC5wMJAEbgb+CzhroJ1E8sEN+D3ZTlNtp0jOHTazihM/EmHL2hjLft9Md4fKmshYY60NAvOA/xxgs89Yaz+D30T3FuCXxpg89ULmEX9vFfH3VuFWTaDigHlUHvJBqo/5NInGV4ltfp7Y1pWAmmuI5NtQg89DgKuMMVEAa+0dwK9zliqRIVJtp0h+VFQ5nHxuPft/oIJn74/y5vOdhU6SiBTOYmAHcPsA678NNAGz8WtHU/g9uvcrEokQj2e7n5Vu2PIwqS0Pk4ocgDvxOKoPO4uaYz+HF91AfdMavKbX8Ha8DanS7uMlEokUOglZVer5CYXyMlRnyRlq8PkL4IJ0E4skcDFw/0A75OYHZGCl/p80UznlBbKfHzcAR80NccSJId5ZneClv3eRiIWJRMJZPU8P/YDIWLbvIRXM+3g9HdEk91zXSLRRg7qLjFXW2qvxaz0XGWP6fOJrjFmZMfuUtfZK4DMMEnxGo9Hc3jtG18DmNcDvcWv2ITLlRJJ1hxOathAcl0TzWhKNr5NoeoNE89qSGrolEokQjZZPk+JyyI/uHfs21ODzSeAL+E+wPOBF/B7P+pXzH5BeyuE/aY9yygtkPz977R9k3nn1hMIuS3/XzJa1ua/t1A+IjEVuAI47I8LRc6p56bF2Vi1rw9PQnSJjlrX2Gvz7v0XGmO3D2LXofjlS7VtJbVhGW/RucAIExx1KcMKRBMd/gPAhp+OGqkm2bSXR8jbJlvUkdrxDsvVdvFhboZMuUtIGDT6ttS6wFPgju8YgvAJ4ADgpZykT6cUNwLGn1jJtfg1vrujkuQf0bqdIrjRMDDL/gnpCYYcHf9vE++tLuzmaiIyOtXYxsAh/yJRtg2x7AfAgEAVmAZcD1+c8kSPlJf3azqY30gscApH9CDQcQnDcIVTsdzxVR56HEwyT6mom2bqRZHRT+rOZZPtWvO7WgmZBpFQMpeZzPDAFWGyM6QCw1l4LfNtaO2GYT75ERmTC5BBzz6vz3+3MU22nyJjkwFEnVXP8mRHWvdTFM/e1Eu/WQx6RscxaOwW4FOgG1llre1Y9bow5y1p7E4Ax5svp5V8FfoN/n7kJv+PKq/Oa6FHxdgaXsQ2Pp5c5uDWTCNRNJlB3AIHI/oQnHE2gdh+cQAWpeAep9vdItr9Hqn0bqY5tJDu2kercTqqjseTfJxXJlkGDT2PMdmvtW8Al1tp/Sy++FNiowFNyLVjhMNPUctRJ1erJViTHqiIu886rZ8IBIR7/3x2881JXoZMkIkXAGLMef6i9/tZ/udf8/JwnKu88v6lu+1biW57PWO7gVu2FW7sPgZpJuDUTCUT2IzRpOm713rihagBS3a2kOpv8T1fzzo/X1UKqq4VU9w5/GBi92yBlbqjvfJ6L/5L4Jvwfn1XAOblKlAjA/kdUMOecehJxT83+RHJsytQwcz5aT/OWOHdfu52OHboBEhEZnOfXbnZuJ7Ht5T3WOsFq3Oq9/AC1ajxu5XjcqvGE9joCp3IcbrgBN+x3yuh5KbxYG6nuVrzuVlKxVrzuqL8s5k+9WBupeBterB0v3oYX78TvjkWkNAwp+DTGrGHX+54iORWudph9dh0HHVPJS4+189KjbSQ1FJdIToTCDid+uI6Dp1WyYmmUNcs7dB8jIpIlXqKDZGsHydYN/W/kBnHD9TjhOtxwnT+t6JlGcKv3JlRRi9PzCVXjOK5/fC+FF+/ESXZS192GF+/AS3TuPo13+t8TnXiJrozprg/JGPrxl/5ceeWV0/76179ueOaZZ1pGe6yh1nyK5MUhMyqZ/aE6WhsT3Ht9Iy3vK+oUyZWJU0Kc8vF64jGPe29spOU9lTcRkbxLJUh1NkJnI0MbyMrBCdXgVFT701AN1XV70Z1w/cA0VI0TrMIJVeNWTcAJVu5aFqxMf/Ycms5LdPvBaLIbL9kNiS68ZMxfnoxB0p/u+T2Gl4rv+p6eJxnHS8X8aTIOqbi/PKVrzVim4FOKQu24AHPOrWPigSFWLGnj9Wc68PQATiQn3ADMOK2WY+bVsGZ5ByuXRklp6E4RkRLhpZvc7hr2xeuK0D2cYe0cFydQCcHwroA0EMYJhtPLK/z59DJ2fq/ECdel11XgBEIQqMAJVIAbSi+r8Jela2f7zMHOADWRDkjjeKlEepok4HjUxroylvsfL3PqJfBSyT3XeUlIL9/z+64pqeSu9V7G953LE+l3cHVDmk0KPqWgHBeOnlPNDFPL1rdj/PVXetdMJJfq9w4w/4IGwtUuS25tZus69RwtIjLmeCm8RAckOnIXWjmuH4Smg1LcEI4bhEAIxw2lp8H08hAEgv7UDVJZVUMinspYHwA3vT4YxnGD/jonPXUD6WkQnIC/vZO5PICTnscNDhgY7/FP5aXSAWoKz0tAKrUzWI0+/u9+rfUYUldXF7z00ksP27hxY/vtt9++wRtmbZGCTymY8fsGOflj9dTUuzz5l1b1rCmSS+khVGadGWH9K108c28rsS49zRURkRzxUn7TXbqGHeBWRCJ0Dacmd9gcPxDtHag6bnp5ML084NcS93zvCVydALguqVj20+g4UF3vhrJ+4D507EjFhxM7Tpo0qeLSSy89/Pnnn2+86667to7knAo+Je8CIZhxai1T59Xw1gudLLk1SqxTN8EiuVJd5zL3vHom7B/iCQ2hIiIiY56Xfvc0gZfcbWnBVde7oU98e+L0fJzrTz9/f3V7y9AGoZ0yZUr1eeedd+ADDzyw6ZFHHhlxda+CT8mrfQ6p4OSP1gGw9LZmtrytJn8iuTTlmDAnn1tP4+b0ECqtatYuIiJSrDp2pOJ/+vn7q/N1rqFuO3v27L2bmpq6nnjiiabRnFPBp+RFRZXDCWdFOHRGFa882c6qhzV8ikguhcIOJ33EH7Lo+YeivPq0hlAREREpdp4HQ62NzKe77rrr3dmzZ+916aWXHnrdddetjcfjI7qrGPrbtiIjNPnIAB+7bALj9glx342NrHhIgadILk06KMS5l06gYVKQe29o5NWnFHiKiIjIyMXjcW/x4sVrPc/ja1/72mEVFRXOSI6j4FNypqbe5bSLG5h1dpiXH2vn/psaadqiqFMkV9wAzDqzljM/P551qzu5/yaNlSsiIiLZkUgkvGuvvXZtLBZLXXbZZYeHw+Fhx5JqditZ5zjwgROrmXVGLe+/G8fe3MnWjR2FTpZIWaub4HDq2XtRUeny0C1NvPdO0bXYERERkRJ0+eWXv9TzPZlMetdee+3akR5Lwadk1fh9g8w5t47I+CBP39PK2lVdRCKRQidLpHw5/li5s86sYt3qLp65r5V4t9rYioiISPFR8ClZEQo7zDytliNPqmbtqk7s7c10d+gGWCSXqutd5p1Xz177hXju3m5ee35HoZMkIiIi0i8FnzJqB02rZPaHInR3ptTcTyRPDp5eyZxz6ti2Mc5di7cTpKbQSRIREREZkIJPGbG6vQKc+JE6Jk4JserhNtYs78DTEIIiORWudphzbj2Tjwjz/INRXnvGf59ardtFRESk2Cn4lGELBGHaglqmza9h4+vd3HXNdtp3KOoUybUDjwoz56N1RBuT3H3ddqKNyUInSUREREauvba2tj0ajVYWOiHZUltb2w6097dewacMy/6HV3DiR+pwHFh2RzOb3ogVOkkiZa+i0uHED9dx0LRKVi6NsubJDjy9Ui0ieWKtDQPXAacBE4EtwPXGmGv62T4IXA1cjD+s35+BS4wx3flJsUhpmDVrVnzq1KnXAJe1tbWV/PsztbW17VOnTr1m1qxZ/b6Dp+BThqS63mX2h+o44MgwLz/ezupH20jq1c6ss9Z+BPg34AggCvzCGPPzwqZKCmn/wys4+bx6OqMp7r1e43aKSEEEga3AGcDbwHTgIWvtFmPMnX1s/z1gAXAMEAfuAX4GfCM/yRUpHTfddNOfV6xYcTeURecN7QMFnqDgUwbhuP4wDjNOq2Xbhjh3X7ud1u1q6pcL1toPAjcBnwEeBaqBAwuaKCmYYIXDCWdFOHxWFS8+0sbqR9r1TrWIFIQxph34YcaiVdba+4G5QF/B5xeBbxhjNgNYa68A/mCt/ZYxRr9kIr2kA7aWQqcjHxR8Sr8mHhjipHPrqKxxWX5XK+tWdxU6SeXu34GfGGMeTs+3Ai8XMD1SIPscXMHc8+pIxD3uu6mRps2q7RSR4pFuVjsP+M8+1jUABwAvZCxeCfQsX5+PNIpIcVLwKXsIVzvMOjPCYTOreP3ZDlYubdOg9Tlmra0BZuE/GV4D7AUsB75ujHm3oImTvAmEYNbpEY48qZpXnmjnhYfbSKmhgYgUn8XADuD2Ptb19L2dOfBwS691fYpEIsTj+X2nJ1JGXYWXU16g9PMTCoUKnYSipOBTdnHg8FlVzDozQrQpwf03NdKoGpd8GQc4wGeBDwHvA78E/hc4ob+ddKEevWLJz/j9XI4/OwwOPHpHF02bHWqqh5e2YsnLSOlCLVL8rLVX49d6LjLG9NXrYDQ9rQe2p7839FrXp2g0mtdrWiQSIRodMEklo5zyAuWRH13T+qbgUwAYNynInI/WUb93kJVLorzxXKd608yvnl/YxcaYdwCstd8Htllr9+t5b2aPnXShHpViyI8bgBmn1XLMvEpee6aDFUuiI+rMqxjyMlq6UIsUN2vtNfg93i4yxmzvaxtjTIu1dgMwA1ibXjwTv/ZzQ14SKiJFS8HnGOe4MG1+DceeWsu6l7pY9vsWutrVF0C+GWN2WGvXA5khv8L/Mjd+3yCnfLyeUNhlya3NbF2noYtEpDhZaxcDi4BTjTHbBtn8ZuD71tqn8Hu7vQK4VZ0NiYiCzzGsfu8A8z5eT019gL//TwsbX9fwWwV2E/B1a+0SYBt+B0TP91frKaXLcWH6ghqmL6zlrRc6ef6BqN6rFpGiZa2dAlwKdAPrrLU9qx43xpxlrb0JwBjz5fTynwITgFfwx/n8E/7wKyIyxg05+NT4g2XE8YdPOe6MCO+u6WLpbc3EOnXjWwT+E//dz5X4F+sngPMLmiLJuoaJQeZ9vJ6qiMuyO5rZ9IZqO0WkuBlj1uP3S9Df+i/3mk8AX0t/RER2GlLwqfEHy0ftuADzzqunYVKQx//cwvqXVdtZLNLNkb6T/kgZOvKkak74YIR3Xuliya2teuiTBdbaS/A76poOPG2MWTjAtrX417Jz8Gtwfgt81xijP4SIiEgeDLXmU+MPloHDj69i9ocibHk7xt2Lt9PZplcvRPKhosph3nn17HNwBY/poU+2bQGuxO8Ves4g2y4G9gam4Pe+uRTYnF4uIiIiOTZo8KnxB0tfVcTl5I/VMWlKBc/cG+WtFzoLnSSRMWPvA0MsuLCBzmiYhI+rAAAgAElEQVSSe65vpK1ZA3dmkzHmLwDW2gFb41hrq4GLgHnGmGag2Vr7c+ArKPgUERHJi6HUfGr8wQLIVl4mHxVg5hlhWt5LYW/porM1WJB/p1L/22gICBk2B46ZV8Nxp9ey5qkOVi6JklLcWUhHABXAqoxlK4Gp1tqAMUZ/HRERkRwbSvCp8QfzLBt5CVc7nHROHQd8IMzzD0V57ZmOgg3cUQ5/GwWfMhzhaodTPtHAhMkhlt2hnqSLRAToSHeE0qMFCABVQFu/O+ph6qgpP8VD1zMRKaRBg0+NP1h6Jh8ZZu5H64g2J7nnuu20NuqBvki+TDooxPwLG2hr8stfxw69W10kokC1tTaYEYA2AElgwHcR9DB1dJSf4qLgU0QKaagdDmn8wRJQUekw++w6Dp5eyaqH23j5iXY83feK5IXjwLSFNcw4tZaXH2/nhYfbVP6KyxtADDgWWJFeNhNYoya3IiIi+THU4FPjDxa5g46pZPbZETrbUtx3QyPN7yUG30lEsqKq1uWUC+oZNymIvb2ZzW9p7M58sdYG8a9lQcC11lYCKWPMbn8EY0yHtfZ/gJ9Yaz+JX+v5LeC6fKdZRERkrBpS8KnxB4tXZHyAk86pY+KUEKsebmPN8g7Vtojk0b6HVjD/gnpa3k9wz3WNdEZVAPPsB8CPM+Y78cejXmitfQB43Bjz0/S6rwM3Au/i14LeDFybx7SKiIiMaUOt+ZQi4wbgmPk1HLuglk1vdnPXNdtp17tlInnjuDBjUS3T5tfw4t/bWP1IO57ehs87Y8wVwBX9rDur13wU+HTOEyUiIiJ9UvBZgvY9pIKTzqkjEHR45M4WNryqnjRF8qm6zmX+BQ3U7RVgya3NbF2nZrYiIiIig1HwWUKqal2OPyvCwdMqeeXJdl5c1k4irqoWkXza/4gKTvl4A42b49xzXSNd7WpxICIiIjIUCj5LgQMfOKGKWWdEaH4vwT3XN9KiDoVE8spxYeZptRxzSg0vPNzGS4+1a9ApERERkWFQ8Fnkxu8bZM65dUT2CvLcA1HeXNmpG16RPKuKuCy40G9m+9AtTbz3Tv7GfBQREREpFwo+i1SwwmGmqeWok6pZu6oTe3sz3R2KOkXyrac32+atCTWzFRERERkFBZ9FaN/DAhx7+gRiXSnVsogUiOPAsYtqmb5AvdmKiIiIZIOCzyISrnY48cN1TJka5sW/t/Hy4+2kkoVOlcjYU1XrcsoF9YybFGTp75rZsla92YqIiIiMloLPInHw9EpO/HAdrY0JHr61k83vtBc6SSJj0j4HVzD/wnpatyW557pGOqNqZisiIiKSDQo+C6y63mXOOXXsc0gFK5e08drTHdTWRgqdLJGxx4HpC2qYsaiWlx5vZ9XDbXiKO0VEALDWXgJ8FpgOPG2MWTjAto8Ac4DM94YOMca8n8s0ikjxU/BZKD3Dp5wZYduGOHf/qpG2FrWxFSmEcLXD/E80sNf+IR7+72Y2valmtiIivWwBrgROwA8sB/MdY8w1uU2SiJQaBZ8FENkrwNyP1TNunyDP3hflrRc6C50kkTFr4pQQCy5soK05yT3XbaejVdWdIiK9GWP+AmCtPbDQaRGR0qXgM48cF44+uZqZJsLG17u565rtdLbpRlekUI6YHWLqgmpeebKdlUvVzFZEJIt+YK39EbAe+KUx5vZCJ0hECk/BZ56MmxRk7vn11NS5PP6nFta/0l3oJImMWaGww7zz69n30BDL7mhh4+sqjyIiWXQ5sAboBE4D7rTWRo0xfx1op0gkQjye3+HlIpHy6WejnPICpZ+fUChU6CQUJQWfOeYGYPrCWqbNr2Hd6i6W3NpKrFODBYoUSsOkIKde1EAi5rHs1k62blTgKSKSTcaYpzNmH7TW/hq4EBgw+IxGo3kNPiORCNFoNG/ny6VyyguUR34UfPZNwWcOTZgcYu55dYTCLst+r05MRArtkGMrOfmj9by9upNn7m2luqq0n6qKiJQIvdQgIoCCz5wIhGCmiXD0nGpef66DFQ+1kYiptlOkUNwAzD67jsOPq+Lp+1p583l18iUiMhzW2iD+fWMQcK21lUDKGBPrtV0DcDLwCNANLAS+BPxzPtMrIsVJwWeWTTooxNzz6vE8eOiWJt57J7/vLojI7mrqXRZ+soHKGpe//aaRxs2JQidJRKQU/QD4ccZ8J/AosNBa+wDwuDHmp0Aovd0f0tu9A3zTGPOnPKZVRIqUgs8sCYUdZp0Z4Yjjq3jlSX+A+qTucUUKat9DK1hwYQPbNsZY+rtmvW8tIjJCxpgrgCv6WXdWxvdtwIl5SZSIlBwFn1kw+QNh5pxTR3dXivt/3UjjJkWdMnLW2irgJWCCMaah0OkpSQ5MX1DDjEW1rFrWxupH20Fxp4iIiEhBKfgchcoalxM/HOHAoytZ/UgbLz3WTipZ6FRJGfj/gI3AhEInpBSFwg7zL6hn7wMqWPq7ZrasVUdfIiIiIsVAwecIHTazihM+FKFlW4J7rtvOjm2KOmX0rLXHAR8CvgHcWeDklJy6CQFO+/Q44jGPe6/fTvsOdbAoIiIiUiwUfA5T7bgAc86tY+8DQqxYEuX1ZzvVnE+yIt2T4H8BlxQ6LaVo/yP89zs3vNbN8r/u0DvXIiIiIkVGwecQOS4cPaeaGaaWLWtj3LV4Ox2qVZHs+iaw2hjziLV24VB2iEQieR2Qu+ecxebw2UGOWVDBK4/FeeOZ1LDG7yzG/IxUqedFA3KLiIiUt2EFn2O1I5Rxk4LMPb+emnqXJ/+3lXde7ip0kqTMWGsPxa/xnDmc/aLRaF6Dz0gkQjQazdv5BhMIwpyP1nPgUSGW3dHCxte7h7V/seVnNMohLwo+RUREyttwaz7HVEcojgNHz63muNMjrFvdxZJbWzVUg+TKKcDewCvWWoAKoM5auxU4zxizvJCJK0ZVEZdFn2ogXOVy/02Neu9aREREpMgNOfgcax2h1DS4nPLxBhomBnn0Dy28++rwalREhulO4MGM+ZOBW4EZQFNBUlTEJkwOsehTDbS8n2DpbY3EuvRQSERERKTYDSn4HGsdoRwyo5KTPlLHe+tj3L14O51terdTcssY0wl09sxba5sAzxiztXCpKk4HT69k7nn1vP5sB88/GMVT8RQREREpCUOt+RwTHaGEKmHmmWH2PSzA6odjrFuVJOjUUIg+PEq945DeSj0/+X4XzRjzCDBm3qseqhmn1TJtfg1P3dPKWys6B99BRERERIrGoMHnWOkIZb/DKph7Xj2d0RT3XLed1u2Fe3+sHDoOyVQO+VFHKIXluDDn3DqmTK1kya1NvPdOfh9siYiIiMjoDaXms6w7QglWOBz/wQhHHF/F6kfbefHvbWrGJ1JEAiFYcGEDe+0X4oHfNNHyvgbwFBERESlFQwk+y7YjlEkHhZh3fj3JBNz/60YaN+mmVqSYVFQ5nHbxOMJVLn/7dSPtGltXREREpGQNGnyWY0cowZDDcWfUcuSJ1bzyZDurHm4jqbhTpKhU17uc/tlxxLs9HvhNI90a5khERESkpA13nM+S7whl4oF+bafnwQP/1cS2DXp3TKTY1O8d4IzPjadpa5xH/tBCUsVUREREpOQNO/gsVY4LMxb5PWW++lQHK5dGVdspUoT2PjCEuXgc777axfK7WvUOtoiIiEiZGBPBZ1XEZeE/NFA7PsDS25rZ8nas0EkSkT5MPjLMwn9oYM3ydlYuaSt0ckREREQki8o++Jw4JcTCTzbQ8n6Ce67dTneH3hsTKUYHHh1mwYUNPP9glFef6ih0ckREREQky8o6+DxqTjXHfzDCmifbWWk1hIpIsdr/iAoWXNjAs/e38vqznYPvICIieWWtvQT4LDAdeNoYs3CAbWuBm4BzgG7gt8B3jTGqARAZ48oy+AyGHOZ8tI4Djgzz6J0tvLumu9BJEpF+TDooxKkXjWPlkqgCTxGR4rUFuBI4AZgzyLaL8ceIn4LfSeVSYHN6uYiMYWUXfNZPCLDwogYcx+H+GxvZsT1Z6CSJSD/22i/IaReP4+XH23nlSTW1FREpVsaYvwBYaw8caDtrbTVwETDPGNMMNFtrfw58BQWfImNeWQWfB02rZO7H6nj31W6euruVREytO0SKVf2EAKd/bjxrX+hk1cPqXEhEpEwcAVQAqzKWrQSmWmsDxph+awUikQjxeH7H1opEInk9Xy6VU16g9PMTCoUKnYSiVBbBpxuAGadXcNCx1XpnTKQE1NS7nPGP49n4RjfP3B8tdHKkxFlrg8DVwMWAC/wZuMQYs8c7F9ba2/BrZTK7PT/VGPNcHpIqMhZEgA5jTOaAdi1AAKgC+n3aGI1G8xp8RiIRotHyuAaVU16gPPKj4LNvJR981jS4LPxkA9W1Af72m0YaN2nwTpFiVlnjcsbnx9O4Jc6Tf9kBaqAgo/c9YAFwDBAH7gF+Bnyjn+1vMMZclqe0iYw1UaDaWhvMCEAbgCSg2gGRMc4tdAJGY/IHwpxzyQS62lI8fGunAk+RIhcKO5zxj+Po2JHk0T+0qAdqyZYvAj8xxmw2xmwDrgD+0Vpb0tc4kRL1Bn7LgmMzls0E1gzU5FZExoaSrPl0XDju9Fqmzq1hxZIorzzZQaS2tNuFi5S7QBBOu3gcqRQsu6OFpJ4VSRZYaxuAA4AXMhavxK9pOQBY38dun7HWfga/985bgF8aY/QoRGQA6ebtPR/XWlsJpIwxmU3YMcZ0WGv/B/iJtfaT+GXxW8B1+U6ziBSfkgs+q+tcFlzYQO24AA/+ton31+f3xXQRGT7HgfkXNlBV6/K33zQS71ZbW8maniePOzKWtfRal2kx8G2gCZgN3AmkgF/2ewJ1gjJqyk/xGMV7aD8Afpwx3wk8Ciy01j4APG6M+Wl63deBG4F38WtBbwauHemJRaR8lFTwue8hFSz4hwYaN8W557rtdHfoBlakFJx0Th17Tw7xt183qdxKtvX0SFEPbE9/b+i1bidjzMqM2aestVcCn2GA4FOdoIyO8lNcRhp8GmOuwG/S3te6s3rNR4FPj+hEIlLWSuZ9mA/MrsJ8dhyvPtXO0tubdQMrUiJmLKrl4OmVLL2tmbYWve4j2WWMaQE2ADMyFs/Er/3cMIRDqLmtiIhInhR9zafjwAlnRTjihGoe+2ML61/Zo+d8ESlSH5hdxbT5NSy5rYnm9/SSp+TMzcD3rbVP4fd2ewVwa1/vcVprLwAexK8VnQVcDlyfv6SKiIiMXUUdfAYrHOZfUM+EySEeuFnDqIiUkilTw5z44ToevbOF997Ru9mSUz8FJgCv4Lfo+RP+8CtYa28CMMZ8Ob3tV4Hf4F//NgE34I8RKiIiIjlWtMFnbUOARRc3gAf339hI+w61jBIpFZMOCjH/Ew08c1+rWitIzqXHEvxa+tN73Zd7zc/PV7pERERkd0UZfO57aAULLmzg/XdjPPbHHSRier9TpFTUTwiw6FPjePmJdl5/VuOJi4iIiIiv6ILPqfOqmXVGhFV/b2P1I+2guFOkZISrHcxnx7Hx9W5esG2FTo6IiIiIFJGiCT4DQZh3fj37HR5m2R0tbHxdTfVESonjwsJPNtDRmuLJv+4YfAcRERERGVOKIvgMVzuc9ulxhKtd7ruhkWiThmMQKTWzz44QGR/kvhsaSakIi4iIiEgvBR/ns3ZcgA99aS88D/72awWeIqXoiBOqOPy4apbd0UxXuzoHExEREZE9FbTms37vAGd+YTzb3o3z2B9bSGokFZGSM3FKiBM/XMfjf95B02YVYhERERHpW8GCz/q9A3zwi+PZ+Ho3y//aiqeOhWQMs9aGgeuA04CJwBbgemPMNQVN2CBq6l1OvaiBV55s552XugqdHBEREREpYoMGn7m4KY6M92s8N77ezZN/bVWPtiJ+WdwKnAG8DUwHHrLWbjHG3FnQlPUjFHZY9OlxbN8Y54Wl6tlWRERERAY2lJrPrN4UV9e5nPn58by3LsZyBZ4iABhj2oEfZixaZa29H5gLFF3wWVnjcvrnxuF58Ngfd6jlgoiIiIgMatDgM9s3xUccX03L+wke/7NuWEX6Y60NAvOA/xzJ/o7j10wGQg6uCziQjEO8OzXqd6sj4wOc/rlxtLckWXZHC/FuFWQRERERGdyw3/kc7U3xqmVtuAE0FIPIwBYDO4DbB9ooEokQj8f3WF4/0cV8vqrPfRIxj642j2hTimiTR3R7isaNSaJNgweRDZNc5l4wge0bkjx3b4LKiloqK4aUn6IViUQKnYSsKfW8hEKhQidBREREcmgkHQ6N6qY4l0r9xitTOeUFSj8/+bwpttZejf+AZ5ExJjbQttFotM9y1t4B/3t1G8mERyoJnucRDDlUVLqEq12q61zq9w5SNyHAoceHmPWhMB2tSTa+0c2WtTHeXx+jq333WtJ9D61g/kXjeOuFDp69L1oWLRcikQjRaLTQyciKcsiLgk8REZHyNqzgMxs3xblSDjdePcopL1Ae+cnXTbG19hr8zr0WGWO2j/Q4qSR7jJnbjUf7jr7H4AxXO+x3WJjJR4Q5/qwINXUBAJIJj1hXikDQD1xffjTG80tK+28pIiIiIoUx5OAzWzfFItI3a+1iYBFwqjFmWz7P3d3hsW51F+tW+8OlVNe5VFS5VFT6QWcy7tHemsTrrs5nskREpEikX7u6GrgYcIE/A5cYY7r72PY24CIgs6LiVGPMc3lIqogUsSEFn4W8KRYZC6y1U4BLgW5gnbW2Z9Xjxpiz8p2ejtYUHa171pKWeOtpEREZue8BC4BjgDhwD/Az4Bv9bH+DMeayPKVNRErEUMb5LKqbYpFyZIxZDziFToeIiEg/vgh8wxizGcBaewXwB2vtt4wxfb/TISLSy1CGWtFNsYiIiMgYZa1tAA4AXshYvBLoWb6+j90+Y639DLAFuAX4pYJUERlJb7ciIiIiMnb0vHSxI2NZS691mRYD3waagNn448KngF8OeBKNlDAq5ZQXKP38qAf3vin4FBEREZGB9HRzXg/0dDrZ0GvdTsaYlRmzT1lrrwQ+wyDBp0ZKGLlyyguUR34UfPZNwadIGQpEJlM3/0d48U68ROdu01RXE8nWjcTeW4XXvWPwg4mIyJhmjGmx1m4AZgBr04tn4td+bhjCIdTcVkQABZ8iZSnZsY3oM7/ECVbjhKpwglU4wUqcUA1u1TgqjziH6hmfJ9G8lviW54ltWUmqfWuhky0iIsXrZuD71tqn8Hu7vQK4ta/3OK21FwAP4teKzgIuB67PX1JFpFgp+BQpR8luEttfHXCTQN0BhPY5jor9T6J66idJRjcR27qS7nefINW2OU8JFRGREvFTYALwCv44n3/CH34Fa+1NAMaYL6e3/SrwG/z7zE3ADfhjhIrIGKfgU2SMSrZuINm6ga437sat2ovQPjOp2PcEKg87m8S2l2lbcRNerLTftxARkewwxiSAr6U/vdd9udf8/HylS0RKi1voBIhI4aU6G+leZ4ku/xk7ln0H3Aoic7+LU1HaPc2JiIiISPFQ8Ckiu0m1bSX69P/Fi7UrABURERGRrFHwKSJ7SnYrABURERGRrFLwKSJ9ywxA5/wrTrCq0CkSERERkRKm4FNE+pfsJvrM1YBH7YnfACdQ6BSJiIiISIlS8CkiA0t0EX3q5wRqJuJOOaPQqRERERGREqXgU0QG5cWitL94C+5BZxGITC50ckRERESkBCn4FJEhib/3It77K6iZ+UVw9NMhIiIiIsOjO0gRGbLkG3/GrZpA5SEfLHRSRERERKTEKPgUkaFLtNO++ndUHXU+bs0+hU6NiIiIiJQQBZ8iMizxLc8Rf28VNTP/CXAKnRwRERERKREKPkVk2Npf/B2B2n2oPPTMQidFREREREqEgk8RGTYv1kr7i7dRddQnCB/yQXVAJCIiIiKDChY6ASJSmuJbnqP9hQDVx3ya8AFzaX/xFpIt6wqdLBEREREpUqquEJERi216mh3L/pVE81rqTvkx1dMuxglWFTpZIiIiIlKEFHyKyKh48Q46Vt9G9In/IDjhKOpPu4rwIWdAIFzopImIiIhIEVGzWxHJikTzm7Q+8kPCB51K5WFnU3XkecQ2Pk33u4+RbHm70MkTERERkQJT8Cki2eMl6V5n6X7n74QmzSB84HzqTvkRybYtxN59nO6NT+J17yh0KiUrHAiGcYJVuKFqnGCV/wlV4YSqcYLVOKHK9LLqneu61j1MfMvzhU68iIiIFMCQgk9rbRC4GrgYv6nun4FLjDHdOUybiJQqL0l86wriW1fghOsJHzCX8JT5VE29kGTz28S3v0qiZS2J5rfxupoLndqxww3hBCtxAmGcYBjSUydQuft8ZiC5W/BY7e/fszyjl2MvlcRLdODFO/ESnf403uF/T3SS6tqBl+gg1bEt69kazjVK1zORkVE5E5FsGGrN5/eABcAxQBy4B/gZ8I0cpUtEyoTXvYOut/5G11t/IxCZTGifmQTHH054ygLccB2prmYSzW+TaFlHsuUdkm2bSXVsB7xCJ71wnIAf5KU/ZHz3P1XpANIPJAlWEqisodYLpOfDOwPM3QLNXkPieF4Kkt14iW689JRkN6meADLRSaqrGS+62Q8se4LKndNdwSbJWIH+sYDhXaN0PRMZGZUzERm1oQafXwS+YYzZDGCtvQL4g7X2W8aY1HBO6FREcCpq/BkvBankzhsfUvE+dui5marAcSvA7aePpOoaXK8GcPzdnAC4QRw3BIGQP+3ZN5XESyUgldg5xUuB4/jnc4OQ/jhuAJygf9hU0t/XS/r7ev48XhIvlQQvAanU7sszvuMN659K+uIE0n/PCpxAaOf3nr+xEwhBr3X+sl7r0vM79w2EaHt2sX8TXSBj4UlxMrqRZHTjznm3ai8C4w4l2HAIoQlHU3noWbgVNXjJGMn290m1bSHZ/h7Jti2k2raSbNuKF4uS3cDUyfitSE/dkP87EEhP3VCv9QH/t8IJ+GOc9vx2OG563v/smt+1neMG0zWLfQSWgZ5paLcUel4qHQx2QaILL/PTEzzG20h2RP35jEAyc5tdgWaXP9/Xb25pGs41KmvXM5ExRuVMREZt0ODTWtsAHAC8kLF4JdCzfP1wTlh56FlUHfGRPtd5Xmr3AK3n5m2IGvo6ZjKeDjLjfgCI4x83fQPpBCr23CeV3BWYpgPNnvTgBnCc4K6bTzcw5PT5x06kg9F0kOqlMoJX/7uLR10ykc6/0+tmNrDb/O43uMXaebHDuGwECwP8f/D/ZvH039ufeqkYJON4ydjuy1IJvGQML95BKtkCyRheKu7//yusMfekONXZSKqzkfjmZ3cucyrqCNTug1u7L4HaSQRq9yU0aQaBmkk7gzL/b5rE8xK7PRDyv6d/R3aWjYBfbtNl1i//Pd8DjB+kDO/2G7LbtOeBUir90Cl93vRn13xP2fZ2pTfRRaqrJR0E7vrsEVgmuvCSXUOqVYxEInRGo6P6e5Si4Vyjsn09A/+5Q2Vtdn97K2sdEmXUGb3yUxhdbSm8LD2nK3Q5O/LEao6aU43nged54GU8ghxFHl3XJZXa8z6wFJVTXqB08mNvb6ajteD3jyVlKDWfkfQ0s5eQll7r9twpEiEe7+Op+qalxLcsS8/4NQ4EwhBI12w6zq5tPS8drMX8m69UbGi1h54HeOmgcQi/So7rpwUnHaAO55esJzgM7AxId593d97kOukpbmZNiLv7Po5Lsme55+GR2nnjuvOGlt1vcnd9PH9dudr5/yG+52cI/y/Sf+F+haorgL5/6EKhUJ/Ls0xPigEv1kqiqRWa3ui1xsGtnoBTUZt+eBRMt3AI7P5QyA0Abka5SGY8SOoJTv3v1VVh2tta0w8k4r0CzOTQf0OkkIZzjcru9Qw/EDn7q9VDS+mw5OKYhaT85Nv913XQ1bbn79cIr2c5L2fQf1mLvu/w+lOJ9AP5jFvFjIv6QNf3/pXTpbWc8gKlkp9wqIZAP/+r83TvWHKGEnz2PEqvB7anvzf0WrfnTtFovxfrXIhEIkTL5Kl/OeUFyiM/uf4BycWT4vLj+Z3VZLHDGi8SIVni/zdlWNeorF/P2trgzivbhpPeQdXW1tLWlt1jFpLyUxj91XyO8HqW83IG/Ze1aBQ2rRtOcoemHO5PepRTXqA88qPgs2+DBp/GmBZr7QZgBrA2vXgm/lOsDTlMm8hYkvUamVyJRAZ8cF1yyik/pZ6XkVyoh3ONysX1zPOgM5rdJ/RBvKwfs5CUn9JX6HImIuVjqB0O3Qx831r7FP67aFcAt46lpoAiOaYWBgVQTvkph7yM4inxcK5Rup6JjIzKmYiM2lDfmP8p8ATwCvAWsAa/cxQRyQJjTM8T4RkZi/WkWGRo+r1GWWtvstbeNJRtRWRAKmciMmpDqvk0xiSAr6U/IpIbelIsMgIDXaOMMV8e6rYi0j+VMxHJhqE2ux22fL9kGwqFyubF3nLKC5RHfvKU/p8CE/CfFLvAnxjkSbHK2eiUU37KIS/Fmn6Vs9FRfopLMaddZW3kyikvUB75KfX050ougs86gE996lM5OLRIwdWxe6dAWTPMJ8UqZ1LOclbOhknlTMpZsZQzUFmT8lZMZa3gchF8bgQOBFpzcGyRQqrD//9dDFTOpFypnInkXjGVM1BZk/JVbGWt4Byvr0GgRERERERERLJoqL3dioiIiIiIiIyYgk8RERERERHJOQWfIiIiIiIiknMKPkVERERERCTncjbOZzZYa28DLgJiGYtPNcY8l14fBK4GLsYPpP8MXGKM6R7K+nyy1rb1WhQGXjXGTE+vv41R5DUfrLWXAJ8FpgNPG2MWZqyrBW4CzgG6gd8C3zXGeNlYL7lTTuUsnZ6SLmsqZ+VJ5QxQOVM5y4NyKmulXs7SaVBZk90UdfCZdoMx5rJ+1n0PWAAcA8SBe4CfAd8Y4vq8McbUZs5b+//au/cYO8o6jOPftlhpQyTPaXsAAApjSURBVEMDclMaQCko90swQizXJ4KJCkYDchVtjVZRRCSQgIAJIohSoYCXEC7lIjbSKBFQ+JVbCQRpCxRbKNJgKS0tBdtaLAjsrn+8c9zp4Zzd7e7OnD2zzyfZ7O77zjvvO5t93mTe8545sQC4o+6wgVxrGV4FLgMOAg6uq7sa2AbYCRgP3A+syMoHo96KVYmcQSWy5pxVl3PWrdXX45xVWyWyVoGcgbNmddp92+0U4BJJKyStBi4GvhYRI/tY3xIR8UlgD+CmTWjW8muRNEvSLGBVvjwixpJW3s6XtEbSS8AVwOTBqLeWa8ucQXtmzTkbtpwz58zK0ZZZa8ecgbNm79cOr3yeFhGnkVZObgCmSeqMiPHABOCp3LHzSSsfEyJiXU/1wNIyBt/EZOBeSSvqyvt1rbT2WgB2A0YDT+fK5gN7RsSogdZL6ihy8AZUM2dQraw5Z+3POXPOnLNyVDFrVcoZOGvDVstXTHtxNbA76SX1KcCZ2RfAuOz7utzxa3N1vdW3RLZS8xXg+rqqgVxrq40DNkh6L1e2FhgFjBmEeitW5XIGlcyac9benDPnzDkrR+WyVsGcgbM2bA3pm09J8yWtltQh6XHSnvETsur12fctc03G5+p6q2+V44ENwN35wgFea6utB8Zmb2yvGQ90AG8NQr0VqKI5g+plzTlrY86Zc4ZzVoqKZq1qOQNnbdga0jefDXTWfpC0FlgG7Jer35+06rGst/rih9rUFODmupWaRvp8rYM+wk33AulJa/vmyvYHFmXbHgZab+WqQs6gellzzqrFORua1+OcVU8Vsla1nIGzNmwN6fd8RsTxwF9IqxsHAucB1+YOuR44PyIeJz3F62LgRkmdfawvVUTsDhwCfL1B3UCvtXDZ6lLta2REbA50StoQEbcDl0TEiaSVpx8C1wAMtN6KVbWcQXtnzTmrJufMOSvjuqx6WWvnnGVjdNZsI0P9lc8zgJdJoboNuI70eUU1lwKPAguBF4FFpMdK97W+bJOBOZJeaFA30GstwwWkrQxXAJOyn+/L6s4E3iBdw1xgFjA913ag9VacquUM2jtrzlk1OWfOmZWjallr55yBs2Z1RnR1+XNYzczMzMzMrFhD/ZVPMzMzMzMzqwDffJqZmZmZmVnhfPNpZmZmZmZmhfPNp5mZmZmZmRXON59mZmZmZmZWON98mpmZmZmZWeE2a/UAhouIOBx4EJgg6ZUWDweAiLgYOEXSrv1ouwWwGDhO0pODPba6vsYB/wCOlvRMkX1Z+3PW+s9Zs75yzvrPObO+cs76zzkbuipx8xkRk4FfA1tJWp8rXwB8okn5U5K+WvpgWyAidgSWAUdIemiQTnsuMLfoyQNA0vqIuJL0wckquj9rzlnrmbNmg8E565lzZoPBOeuZc2ZFqcq22yDdSB/2/4KIDwF7Aq82KN8LmF3yGCsjIjYHpgK/KbHbm4DDImKvEvu093PWSuSsDVvOWYmcs2HLOSuRc2Y1lXjlU9LSiFgCHAX8OSs+Evg78EiD8hFkE0hE7EJaFfkUMB5YAvxM0i1Z/TeAnwPbS3qr1mdEnAt8j7QVojMidgUuz/rqAp4Ezpb0bLNx99YmIk4HridNgNOBjwMLgW9Jmpc7j4BpwETgBeC7wEPAqZJuJa1cATwYEQBLJe2ca39sNo4JwN+AKZKWNBs3cAwwBrgvd46dgZeAE4BTs2taCVxU+1tmx3Vlf7dPA58D3gB+ANwPXAd8AVgNnCPpzlo7Sa9FxGPAKcB5PYzNCuSsOWtWPOfMObPiOWfOmbVGVV75hDQhHJX7/Ujggeyrvvx5Scuz37fI2h4D7A38FrgxIo7I6mcCo4Hj6vo7Fbg1mzy2Ax4FXgMmkSajxcBDEbFNo8FuQpuRwE+BM4EDgDXAzIjYLDvPR4C7gCey+rOAK+u6OyD7/iVgB+CgXN0OpJWok4FDSJPoDY3GnHMYaevJew3qLgNuAfYh/e1ujIiJdcecD9wD7Eua2GcAd5Amkf2Bu4EZEbF1XbsngCOwVnPWnDUrnnPmnFnxnDPnzEpWtZvPvSJi2+z3I0lv0n4Y2KOuPGqNJD0r6VpJCyQtkTSd9A98Ula/DvgTcFqtTUQcQNqWMSMrmgr8U9LU7HyLSSs0a0nBbKSvbUYA35c0R9LzwIXAR4GPZfXfJk1C35S0SNJsUkDzVmff/yVppaTVuboPkla55mVvyL4cmJRtj2hmF2B5k7prJM2U9CJwAfA26W+ed4ekm7NjLiKthL0o6aas7EJgLHBwXbtXsmu31nLWnDUrnnPmnFnxnDPnzEpWiW23mQey70dFxBzSP9rDktZlbxKvlU8Ezqk1ioixpH/Yz5NWckaTQvVg7twzgLsiYntJK0krV/MkLczqDwIOjIg368Y0Juuvkb626QLyT+mqBXc70mrXHsCTkjpyxzzepM9GVtRNKMtJk9a2wMtN2owB1jWpe7r2g6T3ImJVNta8Z3LHrI6IDmBBrmxNRLyTjSHv7axvay1nrZuzZkVxzro5Z1YU56ybc2alqMzNp6TXI+IZ0jaJ0cD8bOUJ0mRQK+8g7WmvuQI4FjgbeB74D2kf/5a5Y/5KWgE6OSKuAk4ELs3VjyStnp3RYGjNgtbXNp11k0NXrn19WbPfe/JOk7Y9vSq+GthqE85Xf653G7SrL2vUbiu6V+KsRZy1jThrVgjnbCPOmRXCOduIc2alqMzNZ2Y2aW/6B+hezYI0gUzPyufmJhaAQ4HbJP0eICJGArsBq2oHSOqIiNtJ2yeeI/0j/y53jrnA6cBy5d5Y3ov+tGlkEXBSRIzKTTT1Ww5qoR41gH7y5tN44iva3qS/m7Wes5Y4a1Yk5yxxzqxIzlninFkpqnjzeTawNfDlXPkjpKdxfZE0keQtBo6NiDuBN0lPz/owuQkkc3NW9xPg3rrtBtcAk4E/RsQlpCeE7Qh8Frhb0mMNxtqfNo1cR3qj+K8iYhqwfTZG6F6Jej27ts9ExELgv5LW9PH8jdwL/CIiJkha1uvRgyAiRpAm+x+V0Z/1yllz1qx4zplzZsVzzpwzK1GVHjgEaaJ4F9ic9DQwACT9G5gHjCP3hvHMWcBS0grXbNK+9T/Un1jSAtKe9P3ofrN4rW4VacXodWAWaVK6DdiJ9FlR79OfNk3Os5z0iOlDsvFdRXqzNqR97kjqBL4DHE+aqJ7q6/mb9Pkc2eO4B3KeTXQ46elyM0vs05pz1pw1K55z5pxZ8Zwz58xKNKKra1O2eFs7iIhDSU9q20c9fFbUAPuYRHrE9URJG4roo66/e0gPAbi86L7M+spZMyuec2ZWPOfMylK1bbfDUkRMJT0FbAXpCWbTgCeKmjwAJM2JiB+THp29sLfjByIixpGewvbLIvsx642zZlY858yseM6ZtYpf+ayAiLiM9NlS2wErSR+4e66kN1o6MLOKcdbMiuecmRXPObNW8c2nmZmZmZmZFa5qDxwyMzMzMzOzIcg3n2ZmZmZmZlY433yamZmZmZlZ4XzzaWZmZmZmZoXzzaeZmZmZmZkVzjefZmZmZmZmVrj/AcQlWoBc72t4AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "dark" }, "output_type": "display_data" } ], "source": [ "#let us load the dispersion data of some standard materials here\n", "\n", "# ./materials/gold.dat\n", "# Gold P. B. Johnson and R. W. Christy. Optical constants of the noble metals, Phys. Rev. B 6, 4370-4379 (1972)\n", "\n", "# ./materials/silicon.dat\n", "# Silicon M. A. Green. Self-consistent optical parameters of intrinsic silicon at \n", "# 300K including temperature coefficients, Sol. Energ. Mat. Sol. Cells 92, 1305–1310 (2008)\n", "\n", "# ./materials/silica.dat\n", "#I. H. Malitson. Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205-1208 (1965)\n", "\n", "# # ./materials/tio2.dat\n", "# #T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, \n", "# I. Ohlídal, A. Szeghalmi, E.-B. Kley, A. Tünnermann.\n", "# Materials pushing the application limits of wire grid polarizers further into the deep\n", "# ultraviolet spectral range, Adv. Opt. Mater. 4, 1780–1786 (2016)\n", "\n", "\n", "from scipy import interpolate\n", "\n", "def get_nk(datafile, wavelengths):\n", " \"\"\"Reads the given file and returns the n+ik complex at\n", " the given wavelength after suitable interpolation\n", " :datafile: TODO\n", " :wavelength: TODO\n", " :returns: TODO\n", " \"\"\"\n", " rawdisp = np.loadtxt(datafile)\n", " f_r = interpolate.interp1d(rawdisp[:,0], rawdisp[:,1])\n", " f_i = interpolate.interp1d(rawdisp[:,0], rawdisp[:,2])\n", " return f_r(wavelengths) + 1j*f_i(wavelengths)\n", "\n", "lams = np.linspace(400, 1200,100)\n", "nk_gold = get_nk('./materials/silver.dat', lams)\n", "nk_si = get_nk('./materials/gold.dat', lams)\n", "nk_sio2 = get_nk('./materials/silica.dat', lams)\n", "nk_tio2 = get_nk('./materials/tio2.dat', lams)\n", "\n", "#make a materials dictionary\n", "matsdict = {\n", " 1: './materials/gold.dat',\n", " 2: './materials/silicon.dat',\n", " 3: './materials/silica.dat',\n", " 4: './materials/tio2.dat',\n", " 5: './materials/silver.dat'\n", "}\n", "\n", "fig = plt.figure(figsize=(15,3))\n", "\n", "ax = fig.add_subplot(141)\n", "ax.set_title('gold')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, np.real(nk_gold))\n", "plt.plot(lams, np.imag(nk_gold))\n", "\n", "ax = fig.add_subplot(142)\n", "ax.set_title('silicon')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, np.real(nk_si))\n", "plt.plot(lams, np.imag(nk_si))\n", "\n", "ax = fig.add_subplot(143)\n", "ax.set_title('silica')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, np.real(nk_sio2))\n", "plt.plot(lams, np.imag(nk_sio2))\n", "\n", "ax = fig.add_subplot(144)\n", "ax.set_title('titania')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, np.real(nk_tio2), label='n')\n", "plt.plot(lams, np.imag(nk_tio2), label='k')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:10:22.017065Z", "start_time": "2018-09-18T17:10:21.622731Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAADnCAYAAAAeuQtLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8HWW9+PHPzJw9OdmTJk26Jt0XulAoRbYyKIJcrwJeFJHl4gYq+uN6RbjgAogLchW8ypUroqJWEHEBkTJI2UqhdKGl+95mX09y9nV+f5y0hJK2SXq2nHzfr1dfNOfMPPMdmjlnvvM8z/dRTNNECCGEEEIIIYTIVWq2AxBCCCGEEEIIIY5HElchhBBCCCGEEDlNElchhBBCCCGEEDlNElchhBBCCCGEEDlNElchhBBCCCGEEDlNElchhBBCCCGEEDlNEtc8YhjGKsMw/u8E23zTMIzdmYpJiFxiGIZpGMYnB/y83zCM/xrw8wmvISHE8Mm1J0RqHH0tpflY1xiGEcvEsYQYCku2AxBCiAyqATzHef+jgHxJC5F6cu0JMUyGYRhAo67r1wx4+V3XUn9ieb2u64+kIYQ/AM+koV0hRkQSVyHEmKHreusJ3u/OVCxCjCVy7QmRGie6llJ8rCAQzNTxhDgRSVxzhGEYTuDHwL8BCeD3QC9wua7rDYZhKMDNwA1AHXAIeEDX9R8dp0078CPgE/1truD4T7yFGPUMw3gf8D1gfv9Le4H/1HX9WcMwTOAqXdcfPca+q4Dduq5fP+C1G4EbgXqS1+RLuq5f1v+eG7iXZG+RG3gbuFXX9ZX9708G9pG8rq8CzgdagW/ouv6bFJ62EFmX4WvvE8BNwEwgCrwOfEXX9Z3pODchMs0wjEdIfmdgGMbV/S+fB7xA/7VkGMZ+QAN+aRjGLwF0XVcMwygFHgDOBiqBg8DPgft0XTcHtF8HPAbcBpT2t329rusd/dtcA/yfruuW/p9P2K4Q6SRzXHPH94APk7y5XUryS/qGAe/fANwJfBeYA/wA+K5hGP9+nDa/C1wKfAo4A/CTvAkQIi8ZhqEBfyV5E7uo/883gcAI2/sWyWvzp8A84EJg44BNHgY+AHwSWAi8CjxlGMbMo5r6LvAbkjf0j5G8yZg2kpiEyEVZuPbsJL8TFwEXAHHgacMwbCM7AyFyzk3AyyS/M2r6/6w+apslJH/3vzxgG0heH5uBfwVmk7xWvgVcM8j+5wEXk7zGFpB8GHssQ21XiLSQHtccYBhGAfBZ4AZd1//a//LXDcM4D6jo//kWkj2sP+//eZdhGDNIPiX7xTHa/DzwRV3X/9L/8n8YhnEuUJKeMxEi64pIPjX+q67ru/pf23Wc7Y+p/xr6T+B2Xdd/MuCt9f3vNwCXARfruv5s/3s3GYZxVv9+1w3Y5ye6rj/Wv99/AV8Alo80NiFyUMauPQBd13951D7XAF0kb8RfHclxhcgluq73GoYRAYIDhwcnp70e2aaj/+fegdv0//17A5rbZxjGEpIj8AZeOxHgGl3Xw/1t/4xkwnysmIbarhBpIYlrbmgAbMCao15/DbjEMIwiksM5Xjrq/RdJ3ii7dF0/+ql2PcknY0c/nXsF+FBKohYix+i63tNfmfRZwzD+SfIaeVLX9R0jaG4O4ABWHuP92f3/Pfq6fInkCIeBjvQU6boeMwyjDRg3gpiEyEkZvvYwDGMB8A2SPUQVgNL/1iQkcRVjnGEYKsmHP1eQvH90AFbgwFGbbjuctPZr4jjfTcNoV4i0kKHCueVE8wOOfl8ZdKt3vydzDsSYouv6p4HFwHPAOcDbhmF89iSaHO41pAyyT2SQNuXzV+SVTF17hmG4SCa1JsmRDaeR7Gk1ST4EFmKsuxn4Osn5qBeQfMDzf7z3+hjsu+l495ZDbVeItJAe19ywm+SHxxnA1gGvLwXQdb3PMIxGkjcCTw94/2xg3yC9rQPbPPOoNpelMG4hcpKu62+TLJR0n2EYDwKfAf53mM1sBUIk57BuHuT9Lf3/PRv4+4DXzwI2DPNYQuSFDF17s0gWhrlN1/VtAIZhLOP4N9xCjEYRksWXhrvN2cA/dF0/MpUsRXUV0tWuEEMiiWsO0HXdbxjG/wJ39Q8h3AlcTfLLuaN/s3uAHxqGsQtYRXJ+3Oc5RrGl/jYfHNDmDuDfSVZgbE/j6QiRNf3zTj8N/I1k5e3xJBPJ9cfbbzC6rvsMw/gh8E3DMIIke5GcwEW6rt+j6/oewzAeB37a36t0gOQ1OZfkfB8hxoxMXnskr7Uw8MX+7SaTLIAmI4xEvtkHnGcYxuHK2r3H2eYZIKLreifJe76r+mulNJEs0nk60HOS8aSrXSGGRIaq5Y6vkfzC/x3wBskiF4+QfOoM8DPgDuBWkk+jvwbcMvCp1yBuAf5MsprpGySLMv1PGmIXIlf4gWkkl37aCTxBcp73F0bY3u0kC6B9iWQv0kqSVUwPux54FngUeIvkCIcP6bq+fYTHE2K0yti1139j/kmSQxW3kKyC+h8kl30TIp/8EOgk+f3SQfI75mg3kxyiv493OjvuJDnP/C8k66WUAvenIJ50tSvEkCimKQ8oc1V/gYseXdcvzXYsQgghhBBCCJEtMlQ4RxiGMY/k0+TXSE5yv4rk2loXZTMuIYQQQgghhMg2SVxzh0lyftz9JIdwbwc+ouv6M1mNSgghhBBCCCGyTIYKCyGEEEIIIYTIaVKcSQghhBBCCCFETkv5UOHvfe97ClAH9KW6bSGyrAho/NrXvpb1YQpynYk8JteZEOmXM9cZyLUm8tqQrrV169ZpgDszIeUs/+LFi6PH2yAdc1zrgINpaFeIXDCR5BqF2SbXmchncp0JkX65cp2BXGsivx33WrvtttsWrF69+j6Px1OawZhyjsvlCtTW1q655JJLbr3qqqvCg22TjsS1D+C3v/0t0ehxk+aUcrvdeL3ejB0vnfLpXCA/zsdqtXLllVdC7jwNlussBfLpfPLhXOQ6S8qHf8uB5HxySw5eZyDX2knLp3OB/DifoV5rGzZsuPnQoUNFQDwjgeUor9drb2trOwf4zlVXXXXzYNukrapwNBrN6IdPpo+XTvl0LpB/55NL5Do7Ofl0Pvl0LrlGrrOTI+cjhkqutZHLp3OB/DufY1m3bp29p6dnerbjyCXNzc1L161bZx1s2LAUZxJCCCGEEEKIzHOGQiFbtoPIJX6/3wUUDPbesHpcDcNwApuBCl3XS1IQmxBCCCGEEEIIcVzD7XH9NtCYjkCEEEIIIYQQQojBDLnH1TCMRcBFwP8D/pC2iLJAAxRFIWbmRFV4IYQQo4Td4sAEIrFQtkMRQuQYVVFJmIlshyFEStTW1tovu+yyuokTJxZaLBbV7/dHt27d6nn00Ucz1qk5pMTVMAwL8BBwY3rDyaxTCt1cWF7JdFcBFlVli8/L71qbaQzLDYgQIv1+NecUftPSiNHdle1QxAjdOXsJf/dFWLX39WyHIoTIIS5bAXfPPIW1MTu/2/pCtsMR4qTdcMMN0zZv3tzzv//7v/vC4XCipqbGPmPGjMJMxjDUHtebgU26rq8yDOPcoezgdrszXg3M7R7aur1OReWKsgrmOV286vPyj44WYiac5y7im/XT+FVnBxuD/jRHe3xDPZfRYrSfj9VqzXYIIk8tLS6VxHUU25OwMbPAxqpsByKEyCkLx8+iLO7nXDXM71EwkVF9YvQqKiqylJeX259//vn2UCiUAGhubg43NzeHASwWi/KRj3ykZuHChWUFBQVWj8cT/vWvf71/z549gbPPPrvs/PPPry4pKbGHw+H4xo0bu1esWNGYSAx/NMIJE1fDMOpJ9rQuHE7DXq83J9fimuEq4DO1dfjiMW7fs5PWyDvr227p6uS80nKuqanlxwf3scmXnfWj8mHtqoHy4XwkcRWppvT/Ny5TFEa17QEvHy6UzwchxLvNLSxmowrz451MKp/M/q592Q5JiBHr6+uLtbe3h6677ropr732WueuXbv8LS0tR5Koj3/843VTpkwp/MlPfrKrubk5XFtba49GoyaAz+eLPfTQQ3sbGxtDEydOdNx4443TOjs7wytXruwYbhxD6XE9C6gEthiGAWADigzDaAU+quv66uEeNFs+WF7JZeNqeLargyfaWwe9YXyhpwuHqnJD3SS+sXcnbZFIFiIVQuQ7p6oBkriOdls79nOds4ZKdxUd3vZshyOEyBE1apw3gjFqnW4mFNklcRVDp6iojrKMPBFNhLqjDHEe9n333bfjoosuqj7//POrr7jiCmdvb2/kqaeeanz11Vd7lixZUvHggw/uOtwD29TUdCSpXb9+fd/hvx88eDC0du3arunTp7vTlbj+AfjHgJ+XAb8EFgDdwz1gNmjA1ePrWFJUMqSe1Ge6Oqh3uvhM7UTu3rcbmVYvhEg1lyaJaz7o8LbTpU1jduVkXpTEVQjRb1zCT3MgRKuzkhrHsFafFGOc6iizlrz/v+dn4lielV/ZlAh2DmmIrMfjif3ud79rBHA6ner5559feeWVV071eDw7bDab2traGh5svwULFhRddNFFNRUVFQ5VVRVN09TGxkbfSOI94ZWk63oQCB7+2TCMbsDUdb11JAfMNJeq8oUJkxlns3PXvt00DbHw0iMtjdxdP4MPlFfyTNewHwgIIcRxHUlcZd7TqLfTdDDT5eDFbAcihMgJJa4yXGaEpr42WksqGG/Vsh2SGEUSoe6oZ+VXNmXqWCPZLxgMJp566qm25cuX1xQVFVkikUiiurra3t397vYsFoty3XXX1T/55JMHX3nlle5oNGpedtll4xsaGkZU/GbYj4B0XV8FlIzkYJlWYbXy/yZOJWwm+Pa+XfTGYkPe1xeP8/u2Zq6pqeNVTw998aHvK4QQJ2JTkrNc7c5yYH9WYxEnZ7vfxyWF0qMihEiqLR5HRLHQ6e2gPRxmhkvmwYthMBMMtRc0UwoLC7UPfehD1atXr+5qbGwMaZqmnHvuueVWq1Xdu3dvYO3atZ2XXnrphJ6enr0tLS1H5rj29fXFLBaL6vP5YtFo1Kyvr3ctWbKkoqenZ9De2RPJ22/aiQ4nN0+cwp5ggAcbDxIZwTpaa3o96GUVXDaumoebM7ZEkRijDMMYDzwAnEOyds8rwI26rssvXx6y9CeuDsforrgtYEvHfq51VlNRUEmnX0boCDHWVTjddKt2TEy6Qn5KnY5shyTESYnFYqbb7bZ+7nOfaygsLLTGYjGzo6Mj+Itf/GJ3W1tbZMWKFY2XXnrp+C996UvTXS6XxePxhH/1q1/ta29vj/zpT386cPnll0/65Cc/qR08eNC3cePGrkmTJo1oGZ28TFxr7Q6+Prme13p7+E1L00kNxPttSxN3TJ3Gs10dNIVH9HBAiKH6KaACU4A48H8k10/+YDaDEulhUVQA7AkZzTHadXjb6NbqmVU1hZf3SeIqxGGGYVwCfAuYDniB+3Rd/0F2o0q/UqsDT/8tdlewD3cxWDUb0bgU/BSjUygUSjz00EP7j/V+NBo1V6xY0bRixYqmo98zDKPTMIzOVMShpqKRXLO8tJzdAT+/PsmkFWBfKMg6by+XVtWkJDYhjmMq8Add1726rgeA3wLzshyTSBOrNfkE3ko8y5GIVNhpOplVIL3nQhxmGMaFwIPAV0lOMZsBPJPVoDKk1GLBYyZH1XT6kvfr5YXl2QxJiLyQdz2uCrC4qJjH2lpS1uYTba3c3TCDqU4Xe4OBlLUrxFHuAz5mGMbTJHtcrwKezm5IIl2slmTiahnBNAaRe7b7/Vwk81yFGOhO4C5d15/v/7kPeDuL8WRMqabQHEs+lPSFvYQVK+WuUlp7U3dvKsRYlHffsvVOF25NY6O3N2VttkTCrPb0cFlVNd8/sDdl7QpxlFeBfye5zJQJvAWcf7wd3G430Whm5++73fnVq5St8ykoKALASiJlMYz2fxurdfQWMNnauZ9rnOMoLaigx5+SEVFCjFqGYRQAi4EVhmFsBcqB1cBNuq4fzGpwGVBCjLcj73w396hOKpxSWViIk5V3ieuSohK2+n0EEqntxXiyo5XvN8xkdkEhW/0jWnpIiGMyDEMFngMeAz7Q//I3SQ6rWnqs/bxeb0YTV7fbjdd7/HWQR5Nsnk/CHQcsWMxESmLIh3+b0Zy4tvW10qNNYU7lFF6RxFWIUpKD4K4GLgLagf8GngCWHGunfHkYW2JG8A94KOlRbFS5rGl/uDjaH14ebbSfz2j+TstVeZe4Li4q5m8dbSlvtysa5Z89XVxeVcO39u1KeftizCsDJgH3989vxTCMB4CvGoZRoeu63AnnGUv/Oq4WZKhwvthpuphZmCwHLsQYd/gp2v26ru8HMAzjNqDDMIzxuq43D7pTHjyM1RQNdyJAa6/vSNvdcShGSevDxXx4eDlQPpyPJK6pl1fFmSY7nJRbraxP4TDhgf7W0c54u53F7qK0tC/Grv7EdDdwo2EYDsMwHMAXgUZJWvOTVVGJKhpWEijZDkakxI6An+mqVJ8XQtf1XuAAvKtG5snWyxwVSl1lqECXv+fIa93xOCXqmDh9IdIqr3pclxQVs83vwxsfQZVORcNWuxRr9UIUzU68dx/hAy+SCHYd2aQvHmNldyeXVtWw3ts3Nj6BRSZ9mORQqiaSQ6w2Av+S1YhE2miqRki1Y40HsCgKUVM+UUa7LZ0H+JSjihJXGZ5Ad7bDESLbHgRuMgxjJdBBsljTm8fqbc0XpQUlxFHpDbyTuPZEwpxitWUxKiHyQ14lrqcWlfBs1wjW0FOtFJ35ddSCcUSa1pCI+rFWzsXRcDGBrX8gvHflkU2f6WxneWk5y4pLebW35ziNCjE8uq5v5Z35rSLPWRWVkGrDHQ8ke19NWRZntGvtbcEzcTJzqqby6n5JXMWY932Sc13Xkxzh9wpwaVYjyoByRxG9mh1zQPdGdzhAqWt0TQtx2FzYNBt9QU+2QxHiiLxJXMdbrVTZbKwbwTBh54wPozhK6H3+q5jR5HI3we1/wlqzhMJFn0YrqCaw+dcABBIJnu5q5yNV1bze5yEmvSRCiBGwqAoh1Q6AVVWQqa75YScuZhaavJrtQITIMl3XE8DX+v+MGaV2Jx7l3bfX3cE+CovBqtmIxiNZimxoipwlXN2wmIWJLjRM9mkL+PnBXTR7mrIdmhD5M8d1gauQ3YEAvbHYsPZTC8fjaLgY/8aHjySth0Vb1tL38l3Y6pbhnPPxI68bXZ1YFIVzS8tSErsQYuyx9Pe4QrL3VeSHHYEA09XMVkUVQuSOMqsVT+LdS990+pLTzsoKcvu+saKwijumzaVUiXNPh59bGjvoRuPWCRMYV1ST7fBEjpo7d677Rz/60YJMHCtv7pYWOAt40zv84QyuWZcRbdtIrGPwNbHjfQfxvvZ9HJPPxz55OQAR0+SvHW1cUjEOu5o3/wuFEBlkUQb0uCpSnilfbOk8SHW8jxJXbt+gCiHSo1RT8STePRrPF+4jqmiUOUuyFNWJ2Sx2vjJ1Jm3YuGfLana176Klt5kHNv2TPUoBN06egSoPWce8a6+9duKDDz64eNq0aa5sHD8vfgPH2+2Mt9lY2zu8YcJaaT3W6kUEtj1+3O3inr34Nvwc17yrsJTPBOBFTzcRM8H7yypGHLcQYuyyKCohkk/lrZqUzM8XLb1N9KpOZldOzXYoQogsKFESdA+ypI9HdVHuLMxCRENz3az3YcHkge1r3jWc2cTkoR1vUG4GWT719CxGKLLNZrMpp5xySlkgEIidddZZldmIIS/muJ5WVMKecIju2PCGZzmnXZIsxuQ9cYG7aPMbhIonUnjqDfS+cBvxiJcn2lu5uqaOf/Z04R9JJWMhxJhlURTCJsRRsVmk2mQ+2UkBs9ywOtuBCCEyroQoPZHQe173YKXMnpujaxbUzmNJoptvtXQTigTe874v7OVvIQv/4orzksVOJCbLfo1Fy5YtKzNNkz//+c+HPvrRj0602+2HwuHwkQod73//+yt1Xa/RNE1Zt25d14oVKxoTiQRut1u79tprJ0+ZMsWtqqri8XjCv/jFL/YePHjwvRfKCeRFj+tpRSVsCPiGtY9aMA5r9UJCu/8+5H2C2/9E3N9BwcJPA/B6r4eOSIQPVVQN69hCCGFRIGYmiCma9LjmmS1+P3PUYLbDEEJkQUkiQHfovfekPaZKqSX3PuvtFgefKnfzbKKYg90Hjrndc7tfx0ThrEkLMxjd2KQoUFCiWjPxZzgzlc4444yKt956q/u1117rMU2TZcuWlR5+z2azaZMnTy6444473r733nu3z507t+TCCy+sArj44ourNU1Tvv71r2/68pe/vOHhhx/e6/V6h1eUqN+o73GttTuodTjY0NU2rP0c9RcS69xGvO/g0HcyE/jX/ZSi8+7GPvX9hPeu5I/tLXxxwmRWdnXSM8weXyHE2GVRFPymSVSxSOKaZ9a3budTUyYxsWzScW8EhRD5pdBehNWM0xV479Q1TzxBpSX3+ov+ddpSYsR4cufxx4jEzRgvRm3oBSbPZyi2scpVrFov/2rV/Ewc6/EftG/yexInTGBqa2vtkyZNKnziiScORaNRc9OmTd1Lly6teOGFF7oAVFXlscceawyFQomWlpbwqlWr2pYuXVrx97//vT0Wi5kul8syfvx4+969e4MHDhwYdk/rYaM+cV1aXMIOv4/eYQzVVawu7BPOwrf2gWEfLxHswr/hFxQu/jyxzu1s6jvI3mCAf60axy+bG4fdnhBibLIqEEvE+3tcR/1HsRigN+DhgLaAxZXH78EQQuSX8sJkUbZuf9d73uuORplmya3P+hJXGbrm5ec9iSEt02MceIuLp05ldvVMtrZuz0CEY1OgNxF9/AftmzJ1rKFsd84551R2dHSEdu7cGQBYvXp111e+8pWZtbW1doBoNGp6PJ4jvaidnZ1ht9ttBXjqqadaLRaLcu21104tKCiwbN68uWfFihWNwWBw2AsB5tYVNEx1dgcXllfyUNOhYe1nq1tGIuwhOsLfiWjLWsKN85PzXV+8g8fbWrh1SgMruzppCo/4IYIQYgzRFIVYIk5UtWBVR/VHsRjEWxGT+Q6VJ7MdiBAiY8qdxfhUx6BJYHc4QInTnoWoju3SqQs4pCZYe2jVkLbvC3p4WytlWUWpJK5pZJowlF7QTNE0TVm0aFG53W7X7r333lMGvnfOOedUbtq0qddqtSolJSWWw8lrRUWF3ev1RgFCoVBixYoVTUBTRUWF9XOf+1z9hz70oerHH3/8xEWGjpJ7YxaGqEDT+MKESazp9fBG3/CWwbFPOpfwgRcB84TbHktg86OgqLjmfJzdwQCv93q4uqaW3Jx2L4TINRYgbiaIoWGTHte8s77jAJNjPRTl8PIXQojUKrO76FEcg77XHfJSFA+i5Mid4viSWs40u3msrXVY+6329LBI8aIp8r01Vpx22mnFDodD+8EPfrD17rvv3nL4zzPPPNO0aNGicovFoiQSCS6//PI6u92uVldX284555xx69at6wJYsmRJcW1trV1RFILBYCKRSJimaY4oCRuVv3VWReErE6fgi8f5dcvwhudqxZPRiiYQXnPvyQURD+Nb9zOKzrqDaPsmVrRt5p6GmZxdWsaLPd0n17YQIu9pQNSEqKJKj2seOtC1H0/tMhbVzGDV3tezHY4QIgPKbHY8/cucHa3L34NW6aKkoIyeQYYSZ9rHJs5kC7C9bXgzVtc3vc21RaewsG4ubx7amJ7gRE4544wzKjZt2tR9dBXg5557rn358uU1DodDjUQi8QMHDvjvvPPOuZqmKRs2bOh65pln2gGqqqrsH/nIRyYUFhZao9FoYvv27b1PPfXU8IoT9Rt1d0tWReHGCZMo1DTu3Leb6DATdvukc4m2bsQMDa+XdjBxzz6C2/5IwYLr6X3hVn7f2syV1ePZ6vPRET3xXAEhxNhlUQ73uCpY1cFvdMTotjHu4LRCWJXtQIQQGVGqafQkBr8v9QS6SVBHmask64nrtKppnBLv4o6W4Xe0ROMRNipFnF4Cbw5vpp4Ype67777dg70eCAQSN9100waANWvWbARYuXJlx9HbPf300+1PP/10eypiGVVDhW2Kwk0TpzDe5uAHB/YOf+1UzY6t7gzCB1elLKbQ7r8T72ukcNFnednTwza/j0/XTsiRgSBCiFylYRIzTaKokrjmqVfbDzIz3k2RszjboQghMqBUNemJDX5vmjAT9KlOyp1FGY7qva6ormONUs6h7mGsrDHAOk83c80+NEW+u0Rm5WziqgATHQ7OLinjyurx3DK5nh/NmE251cp39u+mKzr8Ocu28UsgHiHa9lYKIzXxrX8QrWQKjvoP8HBzIzV2OxfL2q5CiOOwADHTJIaKTc3Zj2JxEnZ37KZbK2Rp7ZxshyKEyIASonRHjl2k06PaKbO7MhjRey2qO4WJiV4e3zfye+G3WrZhJc7M6ukpjEyIE8uZocJWRWGiw8msgkKmuwqY5irAoaq0hMMcDAXZ7PPy9852dgb8hBLDrp4MgK3mVCJNa8Ac2f7HYoZ68G/8BYWLb6CvYysPNR3ipolT2B8M8Lb/vYtQCyGEhkk8kSCKhlWRxDVfvRG1sNQFK7MdiBAi7UoSIbpCwWO+7zE1Sq3ZG5OnoHB5WTEvxDS6/Z0jbicSC7FDLWFhWTFbWralMEIhji9riWuxxcKCwiJmFhQy0eGgxu7ANE32hYLs8PswujvZFfATHGGS+h6KhrVi9ojWbh2KaMubhA+9QuGpN7DpxW/wZHsrn6+bxLf27qJ9FM531YAKm43xdgdVNhvFFivFFgtFmgWrqmJRFCyKQsw0CScShBJxvLE4ndEIXdEIreEwjeHQsOcgCzFWWDCJmQmiKFikxzVvvdKym4tryxlXVE1b3/CqdwohRg+H1YnTjNAd6D3mNj1xkzIte5/3Z09dQkkiyF/2nHyyudEf5AMFGo+mIC4hhirjietpRSV8sKKSqU4X7ZEwb/u8rOzu5FAoSGMoRCRNiY6ltB5UC9HuHWlpHyDw9m8pOvubFC76LE+tfYBJDic3T5rK3ft20xePnbiBLFGAWruDepeLemfyT7XNjkVV6Y1FaQtH8MSi9MXGNYzJAAAgAElEQVRitEcChBMJYqZJ3DSxKAp2VcWpqhRZrMwuKKTcaqPSZsMEmkIhDsWibFBUtvp8BBLDnJcsRJ7SDieuJlglcc1bzZ5G9kxsYHldGb/fKomrEPmqrKAcgK7j9GR2RaNMcGanz8iq2fjXQgvPhC34wyc/GvDN1l18cnItNcXjaekd9nKcQozIkK4ewzB+ClwCFANe4HHgP3VdH3ZXYjgRZ22vh4eaDtIcDg939xGzVs0l1r0DBlkUOmXiYXyv30fR2d/COeMj/Hznk3xl4hT+c/JU7tm/Z/jFpNJEAaY4ncwucDO7oJCpThdOTaMpFGJPMMBz3Z0cCoVojSUI2svQXOWojlqUggIUqxPF4gRFATOBaSYwowHMiI9EuI9EXzcJ30EssSATHE4mO5zMKS7h6ppaCjULe4IB3uhfe9cTy91kXoh000gQSySIkpwqIfLXC94AVxQqPK5ZicVzZk15IUQKlbtKCCo2QtFjDxVuDfqotNszGNU7PlB/GqoZ55nda1LSXo+/kxZtFvMqCyRxFRkz1Mc+PwG+quu63zCMSuAx4GvAncM94Fs+L2/5vMPd7aRZK+cSaVmX9uMkAh341t6Pe9nXCIS6+fGhl/jqpKncNrmBHx7cO6KiUqlQYbUyr7CIOYWFzC4oxKFq7AkE2Or38nRnO/txECmeiqV4HtqESViKJ2J3lmEHEhEviWBPMkGNBjBjISABqCiqiuKuRbW5UexuVEcpimohEe6jo/cgLT27eDPYhG/PJiZYYKG7iPPKyvl49Xi2+X2s6ulmnbeXuAwpFmOMBZN4Ik7MNHFK4prX1hzcyBWzF7J0wgJe2b822+EIIdKg3FFAr2o77jat/i6Ki0pxWJ3HTXBTzWUr4CJ7hMf9KtEUduBsi1uZ67LJHH6RMUNKXHVd33rUSybQkPpw0kOxutBK64lu+lVGjhfr2o5v3c8oXPx5/PEI39//Gp+rm8QdU6bx08YD7Aj40x6DBjS4CjjFXcSCwiJqHQ6awyHe9nn5eeMhdiZsxCpmYa1bjqViJnZXJdZgN7HeA8R7DxA+9DIJbzPxYCfEjl0h7z0UDdVVieauwVI8GUvZNLT6Cymeb6W7ayf/aNvAX1vWUxvr48ySUq6uqeXK6vG80NPFP7u7cnpItRCppJkJooeHCkvemtei8Qir4y7OLzZ5JdvBCCHSosLmpPsEi3W09raSqCmlpriGfZ17MxQZfLjhNLxKjBf3vZrSdjf3dvGZEhuqopJIceFTIQYz5IH2hmHcAtwGFAJdwH+mK6hUs1TMxoz4iPeObL2qkYg2v4FftVCw8NMELE4e2P88l1XV8LXJ9TzX1clfOloJpKrwVL9CTWN+YRGnuN3MK3RjVVS2+338s6eTjV4vPYUTsI1bhnXmQhzFE4n72oh1bSe47QliXdtJBFOwILYZJ+FvJeFvJdq6AQC3u4iApRLbuAXY6s7ENfdKPN27ePLgyzy57w1Oc9m5oKyCiyqqWNXTxd8722UYsch7FhLEE3Gipok128GItHv2wNssn1zH7OpZbG2VKpxC5JsKq0bnCW7rovEIHq2AmgIL+0Ze1HdYaorHoyu9PNAVTXly+XbrDqzFs5hWOY0d7emrISPEYUNOXHVd/y7wXcMwZgFXAcetMuF2u4lmeFis2+0e9HW1dhH07MDtLsxoPPRuJr7lYVxzr8FROoF/7HmSXe0t/FtpBWeVlvG8t5fVvj58gySwxzqXgWyKQr3dwXSHk+l2BxNsdnrjcbYEAzza3cmOSIxo6QzU+vejlM+jyFqI6dmF2fY60S0PQagLFbADdgswhGOOjIkr1g5NKzGbVhJ1VqJWn45rxodh3lVsblvLxkPPM9vbxgeLS1leVs6rPi//6O0Z9P9NNlitklqI1NIwiR1OXKXHNe91+jt4XZnPv1SZkrgKkYcqlASbIieuZdKOg2pn5u4prpw0i63AxqbnU952JBZin1bC/PIiSVzz3C233DKjrq6uIJFIvGtu35e+9KUNx9vvsssuG19bW+v88Y9/vCcVcQy7tJmu69sMw9gIPALox9rO6/VmNHF1u914vYPPnS0umUFg55+JHOP9tPK+jNbdROFpX0JxT2HT+gd5a9c23ldSyoXllVxUVMJWv4+3fF72Bv00hcPYCgredS4KyeWDKqw26hwOJjmcTHa6mOhwEk0k2BHw82pPF1t9PhoVB7ZxC7BOXoi1ai5qPEq0/S2imx8l2rYJMxbI+P+C9/zbeL3Qvhc2rcBSORvH1A9gPe02tnZsYd2up5gR3Mdl42q4o2YCf+1o47nuTmJZngMriatIJa1/TmsycU1gkcR1TPjroa3cUzeOhsoGdnfsznY4QogUKidMe+jERUfbEwrjrJmpLLyo7hRmxXu49VBL2o6xJRxnnl0q448FzzzzTOPTTz/dns0YRnrlaMC0VAaSLqqrCq2gimj721mLIe7ZS98Lt+Kafw3F532H0N6VvLLzr7zs2ck0p4uFRcWcW1rGJ6rHoykKwUQCfyyGidm/1IyGVVWJJRK0RMLsDwZZ7enhN8Em9geDKCWTsY07C+vchZSWTCHuayPatgHvmnuJde0EMzeqGb+XSaxjC76OLaiF1TimXoj7jK9ysGsn39n+BEvijVw2roblZeX8vrWZ9d6+bAcsREpYjiSuMaIJE6tFipNlimEYdpIFB88HqoAW4H90Xf9Ruo/d2tvC2omzubymjHskcRUib2iKhZK4n47AiZeZaQ6HOcOppT0mq2bj42VunotZaOtbn7bjbOpu4pIqNy5bAYFI+mu4iNxSX1/v+uIXvzj9/vvv37F3796g0+lUb7/99tkvvvhim8fjiZ533nnViqIo999//0KAm2++eWM0Gh3xTc8JE1fDMAqBy4EngV5gLnA78OxID5pJ1qp5xL1NmKGerMZhRgP41/2U8MG5uOZ8HMfk8wk3vsq+Q6+wq203j7W1YFEUqm12xrndKJFk1bdIIkEwHqczGsETi2GqFjR3HZbyU7E2zKSofCaK1UmsayeRpjX41v2MhC99T9bSJeFrJbDpEUK7/oZj+ocpPPPrbOrYwvqtv+NCe5zP101is8/Lb1qa6Inl73IShmFcAnwLmE5y6an7dF3/QXajEql2JHGNx4kmEliRxDWDLCSnurwf2AvMB541DKNF1/U/pPvgj+9/m3sm1bKgdh4bmzan+3BCiAyoLKpEBdr6Ok647QFvJ5faXWkvaHTZjDNRifCnnalZ/uZY9nbsJVS9hDnjprP20HFHjYohUoGyDA31645GoyfzW7hnz57Ac88913zddddNveuuu7Zdc801k9ra2oLPPvtsB8CECRNaMz1U2AQ+AfwQsAHtwBPAN1IRQLpZK+cQbc+dm4NYx9v0rfovrFXzsE/RcZ95K2Y0SMyzl3jfITpCPfSpMULBAKgaisWF6ixHdZbhLqpDK6wBRSXeu59o53bCB1YR69qZlSHA6ZAIdhF462FCu57COftynOfczcp9z7Nm79+4urKcexpm8Mf2Fp7v7sq7W33DMC4EHgQ+BbwIuICJWQ1KpMXAHtdYIo4l736bc5eu636SD18P22gYxtPAmUDaE9cObxv/TMzm38rjbGqWSpxC5IOqgnJCihVf+MQjw/Z3H8Ja3kBd6QQOdh9ISzz1lfVcoHi4ryNCZDgrQ4yAiclOxc2cIhNZ7Cs1yqxW6w+nz56fiWPdvHPrps4hzu288MIL6y644ILxh39ua2sL3nPPPTuefvrp9unTpxfdcsstM51Op3bXXXcdvRpNypwwce3/kr8gXQGklaJiqZyDf91Psx3JUUyi7ZuItm8CiwNrxWwsJZPRiiZgKZ+B5ijCmTDBjGNGgyRC3SSC3YT3bksuV+NthBSuw5WLEoF2/G/+D+HymbjmfZJQ3TJ+tHUFp7Zs5hPV4zmtqISfNx2kM0vr4qbJncBduq4frqDQB2RvjLtIG21A4hox41gleckawzAswPuA72fqmH/ZvZYzZ8zhgoYzeHZXapenEEKc2NJJizngacWXSM0UpCqnmy51aB1kgYifTq2QScX2tCSummLh32tqeTVh4e2Wf6a8/cFsCQTRXekf/jxWdEej0Zt3bt2UqWMNddt//OMfx5zj+tJLL3V8+tOfbli5cmWz1+tN2xzFzMwOzxJLyVQUzUa0c3u2Qzm2WIho63qire/MPzheoamxJta1nb5Vt2OffB7OuVeyybOfLZt/yTWlDu6qn8GjrU284snuMPBUMAyjAFgMrDAMYytQDqwGbtJ1PXPrOImMsCjJL/hYPE40HseKJK5ZdD/JaTC/PtYG6aiS/2TEyuX2EFsqJ9I7yFSWoVSWH03kfHKHFBuEzxfG6C2ayG37U/NsuNrhoPUEa7gOdNB0MNVl5+WUHP3drpx9Ng5C/Hbnm2lofXCbO/bxyboqSgsq6PFnaJ2fPJYAhtoLmgsKCgq0yy+/fOIbb7zRefbZZ49bs2ZNd3NzcxjANFNbXTW/E9eqecS6d0H8xFXeRC4zCe//J5HWDRTMvxrl7Lt4cPsfOb1tLVdV17LQXcQjzY1447lahGpISkkWkL4auIjkkPz/Jjksf8mxdsqlZadGq2ycT5HNBYDNYUOxaFgIpySO0f5vk+kbasMwfkiyt3W5ruvHHMaSjir5xo5XOG3+ci6vKea/N717mYp8e3gp55NbJHFN0lL4wLBGUzgQHfo9yM5QmDPTUKDp1AkLOIcevtvqIxTJ3BSy1t4WuidNYV7VVF7K1AK1Imdce+21kxobG/0PP/zwgY997GPR66+/fup3vvOd7bFYzOzr64uWlpbaVVUlkYIlLvM6cbVWziHa9la2wxApYoZ68L3xI2zjT8M1/2rWexezY9NDfLqiiG/XT+enjQfZFRi1Fe0O3wXdr+v6fgDDMG4DOgzDGK/revOgO+XQslOjUbbOp7QgecPS5/Xgs7qx2BInHUc+/Ntk8obaMIwfkawsvFzX9azcaf3ywHbunFDN6RMX8frB9FX9FEKkVzVhXgsOfQrXtu4mPlZdRIGtEH/kxJWIh6LUVc51JTb+HLazqz3zRZK2J5zMKYSXMn5kkSkf/OAH6z7wgQ/UDnztxRdfbK2rqyu48847twL88Y9/bL7llluKrrjiitpHH320cc2aNT2LFy8u/+EPf7hAURS++tWvvpXWqsKjlWJxYiltIPD2b7MdikixSPMbRLu2U7DgekJnfZt733qESwIHuGVyPU+0t/BMZ8eoK3Wj63qvYRgH4F2hj7bTEENk0ZKDg+OJGNF4HI1kFUEZMJwZhmHcDywHztN1/cRlQNOkpbeZv1bX86niCNtdJfQGPNkKRYgxR01RbQGrZqMs7qPJN/QHhwe69hOqOZVZ4xp489DGk47BYXPx+eqJ7DGtPLUzM/Naj7bF18vlbunNz1ff/e53dxzrvSeeeOLIciaJRILvfOc7R+Zoer3e+PH2Ha68XTHYUjELMxYg7tmf7VBEGpjhPnyv30dw6+M4Fn6ap2v/lQeamrm4vIovT5xCgTYqiwQ8CNxkGMYEwzAcJIs1vXms3lYxellUCwk0SMSIJpI95lY1bz+Oc4phGJOALwINwD7DMHz9f57JRjx/2/EKLYqLTzcszsbhhRhzLFoyuUrVUOGa4hpUoNkz9K9qE5OtShGListP+vgKCl+cuRQThZ9sfRUzS8+8N7fvpiQRYHxJXVaOL8aGvO1xtVbNI9qxFem0ym/h/c8T7dxG4eLPs2/JLXxz/U/4bLGFO6dO54FD+9kXCmY7xOH4Psm5rutJPlR6Bbg0qxGJtLBoFmKKmkxc41HAilVRkNn46afr+gGS88lzgonJ/+7byl2TJnB+/Rk8v+e1bIckRF6zaTYAtBT1uI53V9Ct2QkPc9mZtX0eriqynNR6rgoKn5u3nAlmgB+0Ng87hlTqDXho0uYzv7KQZk9j1uIQ+S1/E9fKOYR2PZ3tMEQGJHzN9L38bVxzr0Rddjv3bfoVHwnu5tYpDTzS3MirvaOj6rCu6wnga/1/RB6zqBbiioaZiBGJH+5x1WB0FxgTI9ThbeP3gcl8whVlS3EN/kRq5rwJId7Lakn2uFpS1OM60eWmZQQDGNc3beE691wW1c0f0XBhBYXPzF3OHPx851Aj3njvsNtItW1xC7OcVv6R7UBE3srLsWmqsxytsIZohyyBOWYkogQ2PYJ/4y+wz/sUf675EI+0tnLN+Do+UT0+P3/RxahlUVXiSnKocCTWn7j29wKIsWnV3tfZphbz2ckzUBX5xBIiXWwp/qydZFU5EB1+EhyJhVhDMReUlg17X6tm4wvzljNf8fH9ppac6eHc0tvF9ESffIaJtMnL3yytZCqJYDeJYFe2QxEZFmlcTd9L38BSWs/mBV/hu609LCkq5j8mTaVwdM57FXnIovYPFcYk2r9c1+FeADF2/WLXm1QmQlwwQea7CpEuVjW1n7UTzQD7/CPr7Xzm0HamxbuZXT1zyPuUuMq4Ze6ZTFTC3HnwIAe7D4zo2OmwtW0ndjNGfWV9tkMZTYIOh2PoJanHgIKCggAw6DIheZm4WoonEevNnQtZZFbc20TvS98g3tdE1xn/xV29FmyqyjenTmeC3ZHt8ITAomrE+z9+o0eGCg//ZmpSYSln185i8bh6nGrezvwYM/qCvTziCfFBephcPiXb4QiRlwY+JDzZnsHSgnKKEkH29TSNaP+W3iZeooxPVVVis5z4/uTUCQu4u34acVPh2zs30drbcsJ9MikUDbLPUsLc0ppshzJqLF68OFxaWroz23HkkvHjx69ZvHjxoGs95uWdjlY8kXjfwWyHIbIpFsK/7n9wTPsQztP+H/+97TEu923mv6Y08GDTQTZ4+7IdoRjDtAGJK/EoMTRsw+hxLbO7+EzDQmbgp8NaQkE8iD1RzKvj5/LY7jfxR0dVUTIxwJuHNrJ2/gV8ttbNHZ4monF5EC9GN8MwnMBmoELX9ZJsx2Md8JDvZKdo1JdNwK/a6PC2j7iNFTtf45uzTuWm2cv48dbVRAYpsDShbCL/VjeNWfFu/hqx8dcdL2StevCJbI8kmGW38GS2AxlFFi5c+MNQKHRfT09PabZjyaaCgoLA+PHj11xyySW3HmubvE1cw4deyXYYIgeEdj1FvO8QBYtv4PGWCTQf/AtfmDCZx9ta+EdX1pZvFGOcVdGIKcnCtmYiQlTVsA2xx7XGWcTXGmbRanFzS1M3be0vomg2Tq0/jX9xWvjezHn8rN3DljZ5gDta/fHQRm6dMJ2PzTiT3259IdvhCHGyvg00AhXZDgTApg1MXE9u2HCDu5T9yskVKQ9Fg9y7dwf/MXUG3529iOeDKvt9XSioTCgsZaHTxrR4F5uA/2pso6V3w0kdL902d7dxYYULm8VOJCa18ofi7rvv3rhu3boLAHe2Y8ky/7F6Wg/Lu8RVsRWiOcuJy1Bh0S/a9hZ9L30L9+lfZo37BtrffpDPV42j2mbnNy2NSB1XkWmaqrzT45qIEVMsQ7qBKrTY+Gr9bHZbKvjZ5n8SjwUAMONhtrds5E1/iMtmncvNFVF+7VjEqgPr03kaIk3CsRAPtXXx1QoHG6pnsbV1W7ZDEmJEDMNYBFwE/D/gD6ls+/aGOewNhfht455h7WcdkLjaNPtJxTDDarIxFDupNgA6fe3cvsXDBxuWsswJH7a7AGhXNbbETB5p7qTZ89ZJHycTdrXvIla5kJlV09jULEVSh2rx4sVxwJPtOHJd3iWuWtFEzFiIhH/kwzZE/kn4mul76ZsULL6R/Utu5Z719/OlUjc326byk0MHCCQkfRWZY1E0YgOWEo2iYRtC8bCrpi3Ba3Hy4JYXjyStA5mJKI9veY7m+mVcVxikYNoynt61OqWxi8zY1rad58vP4/qqCLd2uwhF3vvvLUQuMwzDAjwE3DjUfdxuN9HocTtcjmiwW2iwF/LX3uF1UhU4XAQVE6cZwaZZcbtH1sllsziYFOvlT8HYiNs42gvNGzjWGIuhHCNVcZysPVoJp5TDPu/JdSLlyvmMlNUqRRdTLe8SV0vxRGK9ByFHx/6L7DGjAXxr7sU55wp6T7+Fezb+nBts3dw+tYH/PrCP9qjMJROZoakq8YGJq6JiOcFQ4alFlSxR/dzVESAW8R5321f3rCYwYSE3FIexTV/GkzsleR2N/rDjFebOOYNPTF/Kw2//M9vhCDFcNwObdF1fZRjGuUPZwev1DjlxHbjPcCTK4gRUO854BKtmGfb+hy2um0pU0dh6aBNxM/sPv91u94jPJdW2BEIsdWonFU8unc9ISeKaenlXVVgrniSFmcRxmAS3/J7A5t8QW/g57rPMoikU4o6p0yiT5UhEhlgV9V1D1GOKhvUEPa4fnjCTdbZa9jYNbX7ThkMbuN8T5yJbiIunv+8kohXZEotHebi1hfeZ3cyomp7tcIQYMsMw6kn2tP5HtmM5mk3ViKIRUTTsJ7E0zqklFWxWinMiac01m7sOURf3UGgvynYoIs/kYeI6Wea3ihMKH1iF97UfoNVfxCOVF/LL1ha6Y8N7yitGL5ui8oW6SRSp2VnbV1PVo4YKq9iOE8s4ZxHz6eOZtuEtMr+5cSP/44nzUWuAD0w7c8TxpsqMqukUOYuzHcaosqt9Fy9TxjXV1WhK3g2SEvnrLKAS2GIYRivwJ6DIMIxWwzCWZTMwq6oRRSU6xNoCg1EVlfmKjzd7ZUriYA52H8CvOpk7blq2QxF5Jr8SV9WKVlgja7iKIYl1bqXv5W+hlU1j57wbUayF2Q5JZMhEh4MlxSXMcjqzcnyLory7xxUF63ES1w9MnM0e2zj2Nm8a9rE2Nr7Fg30JPmYLsLwhe8mrgsLnqitYWjsnazGMVr/ftQaXGeVfpmf1fl+I4fgDMAVY0P/nesDb//c3sxgX1v4HhxFFO+4Dw+M5bcJCVDPB+uYtKY4uf2yngDlF8qBSpFZePb7ViiYAEO8bXq+EGLsSvhb6Xv4mzhkfxUzIHNd0OqXQTZHFwsuenmyHQrk1uXafO0s9rlZFIWoO7HFVsCmDP0d0qBrvs0b5P1+Ukc7dX3toI5ZJC7m+MEC8/gxe3PPaiNo5GYsnnEJBIsxLB6VC7nCFIgF+2xviM0VhXiuuobW3JdshCXFcuq4HgSMLShuG0Q2Yuq63Zi+qJKuiEkUhgoZVHdlSNu8vcfNqXBl0zVWRtMXv56LCvEozRA7Iqx5XS/Ek4t4mSMiQTzF0ZsRHYPOvIS6JazpdN34C19dOzHYYAJT3F0xwD6GSbzpYFYXogKHCASy4jnEDder4WYRUG2/uf/2kjvnagQ084le52hFi2dSlJ9XWSFxYWsprlEh13BF64+AGtqqlfGrSrGyHIsSw6bq+Stf1kmzHAcke1yhKcoqGMvzvgNMnLmJCwss/9stSL8ezuX0vVXEvle5x2Q5F5JG8Sly14kkyv1WIHFXSnyxaT3Kx9lRw9SeshVnqcbUoMPDxml/RKDzGp/HpJaWsp4RE9OQTvpf3r+PRgMa/O8OcPvn0k25vqKZVTWNqvIenD8qwupPx6P4tTE94WFx3SrZDEWLUOvzgMKIcv7bAYGaNm8k1RRp/ibjo9HekKcL80Olrp11zc0rV1GyHIvJIXvXhW0omE27M/BA4IcTQFVssdA5zuYNUs6vJLLEwSz2uNkUhOGDUrz+hMH6QHleXZmG26ePentQNR/vnvjexTF3CZwqixCct4c0Da1PW9rH8S/VE1pkm7X0b036sfNbe18rK+EyuKIvxVouVWFxGFwkxXFZVIWZCBBXbcbpv5o2fy0cqKqgyg2hmAgCHGWFlopCndh5rtVUx0FtxKwsK7BjZDkTkjfzpcVVUtKIJ0uMqRA4aOH+zJAeWHTqcuDqOMa803SxAbEDi6ovHB+1xXVIzA5/mZHvL5pQef+XetfwxZOFz7jiLJi5OadtHm109kznxbp48tCutxxkr/rxrDVbiXNRwRrZDESLrEiPYx4JCFIigHHME0ILaeXyl1MreuMLDPSF+1h3kp91Bvnaojd9vlaR1qDZ0tzIj0YPN4sh2KCJP5E/iWlALqoWYZ1+2IxFCHKXQkuzZjCUSFFuyP9DDoWr4YjHsIyzMcbKsiknkXYlrjIJBCi+dXlzKOqUUMw0FQJ7Z8wZPhmzc6E7wvsnpSV4VFD5eNY6XKKXZcygtxxhrIrEQf+yLcrE1QImrLNvhCJFlw/8MTxbHM4mSHP1yNJvFznVlBTwVL+LRLS+wvvEtNjW/zebmt2nvy3ptqVFle+tOooqFU2pkbr5IjbxJXNXiKcT7DkE8nO1QhBBHKdSSyWprJIw7BxJXu6riiUVxqNn5CLQCsQGJqjcaoYDYu7Yp0CzMxMcbns60xfH07jX8JuTk2oIEH5z2vpS3f/H091Fmhnhid/qHI48lr+x/k0bNzRX1C7MdihBZNZI661YlOeIlYg6euL5/6hLiispfdrx68gGOcXEzzhbcLCyWh2wiNfImcVWKpxLr3p3tMIQQgyjUNILxOJ5YjCIt+4mrQ7PgL27AoWYnFqtiEkm8c8vVFw1SYEYZOOP2tOoGei2F7Gga/tqtw7Fqz2p+2gcftQe4es5ytBQNn66vrOdfbX5+0xvBG/ampE3xjkebDnBaoouGyoZshyJEFo2gxxWImmZ/4vre9891wLNBhbgZe++bYtg29PUyX/GjjODfSoij5VHiOoVYj8yhEiIXFWoWfPEYfbFYTvS4Oix2vLZiHFmqcGzBJGa+k7h2BQOomJRa35n/e1pJGeuVMsxYcLAmUmrdoQ18r62PhVqI2+adQ3lh1Um1V1lUw5erK3nJLGHNwQ0pilIMtK9zL2uUcj5RU5ftUITImpH2uEZNk3AigfWoFmZUzaA07ufVQ6mtKzCWbWzZhisRpqFKHrKJk5cXiatiK0JxVkqPqxA5qlDT8MXjeOMx3DnQ42rXNB2WsGcAACAASURBVHq1AiwKWLKQvFoxiSTeKSvSG/IQUSyU2wuA5PqyMwiwJo3DhI+2u2M3t+/cQhiFuydP4rypI1sup6qohq9PnspenPxmixQxSafH9m6gNuFj2aRTsx2KEFky/M9vCybRRIKoaXJ0qcCllbVs08rwhvpSE54gEPGzSytlcYU8ZBMn74R3kIZh2IGfAOcDVUAL8D+6rv8ozbENmaVsGmbER8Lflu1QhBCDKLQkE9e+WIxae/arCzpUlT5L4ZG/++LxjB7fikk08c4x44EOeiwNVBWWscPnYcm4BnosRexuWp/RuLyhXr636QXOb1jGFa4wZ84/jz+0HGJXx9AeCs4aN4PPV5WxFwcPvP0i5oj6Q8RQeQLd/D06l8uLY6zVbETjkWyHJERGmf15a6G9kDPq5vDcntf/P3v3HSbXWR78/3vazJm6O9ullbTqXbLchWXZ2B4cDMTAG2xaQgmQ35sQAgmEDnZISEio4U3CjwTIG5IQ0xxwbAx4bCRbsiVZttW7tmhX2l6mt1PeP2Z2tdIW7UpTtjyf69Il7bRzH3vPmXOf53nu+4rv0fKJqw04L6tLvF7J8nSitN8H88HLyTRBl8Qj5Q5EmPWmMuKqAl3AvYAfeAD4VCgUemsxA5sOrWYd9pCYJiwIM5VXUYkZxswZcQUiSm50U59mA/pC0GyLrDVq/ZSRolfxstDlA+C2ygAvydXY2VjJYwObp8/s5pPNzfTYCp+q8/KJzXdz65Ib0BTHuO+o9dXxvg138+c1bl4wXXzz0DNifViJ/OLMHmwk3rBKtMcR5p/hW2P3LruB39VT1PquvMxBwyZrWySMLC4uJqk13joazAgHe5qLFO38tef8UWrMGMtqlpc7FGGWu+IVZDAYjAOfG/XQgVAo9ASwDfhhsQKbDrV2PXanqP4mCDPVyFRhw8A/A9a4OiWLqJpLXF1lqCysYpG5bJS3VXKzyumgRnOwSkry/cHeksc12mBigH8+HOLxyoXcu6ia9/gVPuDbSKtaQa8pY2DjkSUayNJohmlWLL7cneR4t1jTWkpZM8OPhlL8vl9ih6eawXh/uUMShBLKDbl68jdEaz1V9EZ7Jn2HhkXGMkkZBh774lTj6+qX06OodEcOFi/ceSqcGOKUUsWr6gK09IkbA8LVm/YVWygUUoHbgeKWupwiyelH9S/GGjxR7lAEQZiAR1GJKzpxRwCfUvoRztFUSUIBYqZNFhm9DPFotolhZS957EwqwzLF4I2LVtHqbKC9xNOEJ3Jh6AL/98jTfOjYK3xtIM2RlIEBKJLMoGnxm4TBZy4M8heHdnC8W5yHy2HPuZdol328dfmWcociCCU1POLqzffkrszXCZiMikXWMolmk3isi9PrN7o9HLecxQhTAPbFE9ykipaVwrW5mqGPbwJh4PuTvcjn85HNZid7SUFIdTdgp4cg0YPP5yv69kplLu0LzP790bTLSzgUTygUcgGHgZpgMFhZsg0XkVdRMBbeCYHNqOe+h1uWSVjWld9YBM78CGsqGyctO8o04mqSMS/d/6P95xis83OHe4i/t2uws4mSxzUZwzI41nmUY53ljkQYz39eaOOz9X5+XbOcZjGiIcwb+RFXKZfCVjhcV3yHwzbJmCaxTAKnraEqGqZpsNaO8N1w8a9b56u9HUd558qVrKpbxekesbxPuDrTSlxDodBXyY223h0MBietAhGNRkuSuHrWbMDsOYKc3+Zc4PP55sy+wNzYn1ImrsAXgA6gppQbLSavopJ01xNV3AD4VJVEpjyFZPR8oppMxUjJjpKvcVUlCRnGFNLJ9BzmG+v/koCmcWL3V0sakzD7Nfc1s2/BPbyzMcBfisRVmCdGRlzzRZam0m4tN+JqEEnFgAp8up8aTxVO2+BI18niBTvPxdJRjisBXlUbEImrcNWmPNQQCoW+Qa5A0z3BYLB0PRom4Wh8FY6GG0idebLcoQhCQYRCoRuA1wF/U+5YCsmrKMRlnZTsxLDtSQs0eRSFTy1dQbHSyYuJa4S07MSljl9wqFhGRnyNy4oXmRk6n/1Lju/8Imb0fEljEuaGHzYfYLEZZWvTjeUORRBKyk3ufDqVGTSabZAxDWL5ljc+p5frqhppVipJZYvfN3s+2xONcbOcQJHKu2RImL2mlLiGQqFvAkFyI63lrRiSp9ZuxHP9B4gf+j5m5Fy5wxGEa5ZfP/4vwAeBObMQRALcikJC0UGSiFmT3xVf7nKz1uMloBUnoXTKMhaQTg2Skp24tNK253HKuX1Pj9O6xM7GsJKiuI5wdQbj/TxpeHiwwjlhBWhBmEvs4anCdoY+xYs+hb7cmm2SMbNkzQxJyUGl7mOjA46kRRucYtvbfhDNNrl+0aZyhyLMUlPp49oEfIjchXRLKBQafuq5YDB4XxFjm5Basx7fLR8heeKnZM7tLEcIglAMHwUOBYPBHaFQ6NVTeUOp1pJfvs3p8MgysiSRUFzYqUHiskadx4tvgh6fWr7Pa4PfTzpT+Pw94NTJSBoOEqRkLxVub0nXYFfli4fIDqXg2xVryYXHT7/AHRtu4vUrt/Kzk8+WOxxBKCobkJBwWxnOK15cVxiOUSQVGXukHVmv4mGV302TOcS/9UeKH/A8lzHSvIiPOwMS+9vLHY0wG02lHU4bw6vfC0DxLULxL0bSXEiqDrIGZgbbymKbmdy/zSy2mQYjhZWNYyX6IF+B07H4djxb3kfy5H+TOvNEocIShLIKhUIryI20Xj+d95VqLfmwq1mv7HbkRn5iKGTDLURsFc0wJvwcK9+ewE6liMYL08d0ie6iPZXEBiwk0pJGMtxLMhBAtUq7Pr6GXNXKocgQZrJw2xVryQXIrZ3+cTjDu30ZdrirGEoMlDskQSi40RelbocbGZt+WyIgjX9DdJiWn8mTMXIzXrrQuF/poU/x0ton2uCUwo7uNj5T56NSnJ+Eq1Dyhopa/XU4m+7ENpLY2RS2ZSApDiRFA8WBJA//24mkOpFkFdu2sJL92OkIin8J8Ve+Q6ZD9G0V5pTtQC1wND+rwQH4Q6FQF/C/gsHg8+UM7lp4FRXDhkQ6iZXsJ6a4Ju3lqiu5W+auAhZN+ssVq/mPzvM8NdCHU5ZJyw5sY5A0Ci6ltMmSrjpISxqWOWdmgwszzPNt+wlufjVvXX493z7ydLnDEYSCk6Xc94QtSbjzs1gGDJMFVzidO/JT6LNG7obvgXiEW5zwVBLsCWYBCYV1tvcsXQvu4M7FG/j5yefKHY4wy5Q8cU2deWJ6I6WqjuKpR/HUI7tryR74nljTKsxFPwR+Oern24B/BbYAs/qWpFdRSCBjZcJYqUHiLu+kxZmGiycNJ7CFstCZG+l0ygoZ2YFtJEkhUaGWtkiEU3WQkTVsU7RdEIrnPzvb+Wydj1/XLKdFVBkW5hh51I1Nt5ZrgTOQSePSJr+sdeaL8aXzNw4PdR/j45KH7ogYbS2l55IW97jgMSRxw0CYlpInrtNmpDDDbZjhtnJHIghFEwwGk8BIOcNQKDQA2MFgsKt8URWGV1GJo2KnhnIjrhWLWTrJiOvwSGuhRlyHp5Rp+Tv0+nDiaKRI2tAglbaPq65qpKXcEglBKJazvWfZ13AP71wY4K9E4irMMXK+Kq2NhFtzkZUUIpkUunvyYntafobN8FRhgO7IrP+anXV2tr3Cm1av48bF17G//UC5wxFmkdJesQmCMCXBYHBHMBisLHccheBVFeKyEys1hJUcIOyspXqStYwjI65TaGswFcplVSZ11UE6n7imbBuXXLAl/FOiKw4ykgriLrNQZI80H2SJFeHWJTeUOxRBKCh51PeDW3OSkhwkjQy6PflMlpGpwuLGYVklMnFesP3cG6gqdyjCLCMSV0EQisqrqMQVF1Z6CCs1QK97AbUO54R9WvXhEVelMCOuYxJXxUFacuQSV8tCL23emh9xFT3shOIbjPfxS8PLg5Uu0R5HmFOUUTNl3KqDpKSSNFLodhZpknqimqJiImPZVinCFCbxq44TrDL7aapeWu5QhFlEJK6CIBSVT1GJq16s1CBWcoAerQpVkqh1OMd9vWukOFOBRlwvu4hxKioZWQUzQ9qycF2hCmWh6YpKWpx6hRJ5/MweZGxet/LWcociCAUzvMbVRsKlaiQlhUQmBYDT4ZrwfQ5FIytuHM4IneELHFVqeO2CFeUORZhFxNWTIAhFVampRBwB7NQQGCnilkXYslngnCBxzV+Q6AVa4zp2xFUljQLYJEwDndLeeXfKInEVSidjpPlpJMPrtCQ13rpyhyMIBXFxjSu4FJWkrZDM5spEuDX3hO9zKhpZaeaXd5kvnuy9wC32gDg3CVMmrp4EQRhRjFmzAdVB1BnASoUBsJIDdFoqi/Xxi2h4FAXDtgs24qrmE9fh/NUpy6Tze5oys7gwi7LfE3HKMmm7xPOThXltV+t+WmQ/v798Y7lDEYSCGGmHA7gVhSQSiUwcAI9z4sRVV1RSInGdMY52HqdVqeT+pZvKHYowS4jEVRAEAN5Wv4CHlq8q+OdWag7CqhcrNQSAFe/mrFLJGrd33Nd7FZW+TAa9SGtcXbJCyh5OXHMFOpwFSpKnIpe4isJMQml9t+UoK60I25fdUu5QBOGaKSPnbAmXLJG0c7MLTCR0dfzZPJAbcc2IS98Z5Wd9vWyzBwl4asodijALiKNXEAQA7qupY5nLPWmP1elSAL8iMyS7sDNRAIxwGy2eZax0ucc9AXkUhb5sZtwRVwW4s7KKDZ7xk95xY8jnrcPpqy5LpPKJY9LI9fIrVOudqdBlmbTIW4US641282jaydu94HfNiYLlwjw2esTVJUkkrdxJNSU7cGsTJ666opISl74zyuELRzin+nnj0s3lDkWYBcTRKwjCJa1nmvSJC1tMl1/VkCWJsGkz3P7FDLfSFtiMJEmsvSwBvbeqhhqHI5+4jk0mf2/BIt7asICPNi1n6RTjVC8bcXVKkMova03l10QNF4QqBV2ClCUqWgql96vTz9MluXnPqhvLHYogXBN5VFVhl2STzJ9TU5KKS5kkcZVlMeI6Az3a28d2Bqn3Lyh3KMIMJ45eQRBY5NQxLIu2ZJIG5/TbZlRN0Jc1oGlYNoQz6ZHHjKFWDFcVB5NpXlURGHlcl2XeuaARgOZEgoCmXbL29BZ/BbdXBvhSazMHohHuqqqeUmxjijNJkMq3QsgaKUykko64uiSbhCWGXMslFAp9MBQK7QuFQqlQKLSj3PGUko3Nd86dYZM1JKYMC7PacHEmCTt3TjUNAFKouNSJ+4Q7FYVUSasaCFNx+MIRTigB3ta0vtyhCDOcSFwFQWCJ7uJ8Os2FdIr6fJuaJt1FhXrlacMP1i/g66vXc1dgbCJZpznoR8NMDYw8ZqcGMcJtPK81srWicmQbdY6LCfOReBSHLFOZf65Wc/DehYt5pLeXzsAG9sZTbPH6p7Rvw+1whnv7OSWblJlLXG0jSUp24tLGLxRVDG5M4qZZsu0JY3QCXwK+Xu5AyuHCUAc/Sjn5XY9Fnb+h3OEIwlUZXuOqYOOyTRLGcOIq45pkuYsuSWKpxgz1X+2nuc7qZ239mnKHIsxgInEVBIHlLjctqQTdmfRI4vqFFav5yJJlV3zvbRUBjsdj/E5dw5giRw1OJz2yBys5cMnjmc6XONtwJ+dSSf5Xbe7ieaFDpy+T4QOnz5C57v8jYZo06W4cksyfLFnKsUSSFzd9GO+Nf0jX5v9NpaZRM8FI72jDU4WH/9axSFn5xNFIkJYduEuZuNoGCZG4lk0wGHw0GAw+CnSXO5ZyeerM85yUK/jDZWsvmXIpCLOFkv+9VWwLt50lYeQK7eUS14ln0DhF4jpjdQy2s1uq5u0NC0ZuNAvC5URNcEEQWO5y8+uBXjKWzdaKAIH8VKvAJFOuABqdOhWqykPNp3ho2Spurwzw9ED/yPP1Die9WiVW5NLENd22A9fq+/nBaQefDrg4noixwuWmJZnArlyO1ngrh489zxtq67i/tg4Jif9a/ACWkSTyqw9j3/O3DFoSy1xu+rLhSWMcniqsSBIKoGGTNrO5J40kCVnHqxVuXe+VuGyDxPD2hVnB5/ORzZb2/5nP5yvq5//g/DE+vbCJBzfcxRNt+4q6LSj+/pTabN4fbQo3/Ga6iyOuJj7LIJzO1StI2tKkNQucMkQNUWNgpvrx2f18aeUaXrPyVbzQfbjc4Qgz0KxLXDWnhLdSwVOp4KmQcbhkLpxOky9YKgjCNNVoGo26zol4HI+iUONwsMbtAUCTJr/rudHrpS2VJGwY/Hqgj3uranlmoJ/hG9pLdJ1degNW94FL3menBkk3P0Xf+nfzr698mT9oXIIiSfxDeytK7ToAHnOu4q3pfYRNk8ca30hWryL27BewszEy5/fQpVawwDFxEY5hoxNXZ34ta8LIJyFWlpis45vC5xSCKkk4MIln01d+sTBjRKPRkiauPp+PaLS4X2pRovyLs4o/DaQ5WbGMVzoOFW1bpdifUprt+zMXEldVzl2+Ouzc7JVwKvf/I2mDPsksAh1bFMebwSLJMD+MS7zDneGYHpjVx5lQHDM+cXXoEvXLHCxYnvsTaMidcJMxk3jYwszaXHeXl70/SxM9cIUPEwThElWaxp8sXsbJeIyuTBqPoqBKEtsqA7SnkizWXbm+oxN80W/y+jkSy32x7Bzs50219Vzv8/NyNIJbVliku2jzr8RKPjPmvYkTP6WiYQsHVr6dzxz8F/yqwslEHM/yRQBEaq/ja6d+gef6P0DxNRLd9VfY2RgA2Z7D9C7byAJnyxX3URk1VXi4enJqVOIYlzR8VxhZLhR3PnGOZRIl2Z4gTObwhaP8zHcHf1CZ5C+iC+gKd5Y7JEGYEvWygnrhZG7mTcq2CEzSl9sp2WQssVRjJtvZvJdtm+/mrQsr+WrvuXKHI8wwMy5xVTSoW+Jg4QoHDSscVC/UyKZsuloynNyXpKslTHTAIF9ADoD129zc+iYfAz0q/ReMiT9cEIQRmiTx4cVLCRtZ/v/zuS+HuGkSMww2+/w80nWBtzW4qFI1OjNjRwhrNQfrPF4e780tFUxaFjsHB3htdS0vRyNsqwwQNU26nXWYyb6xAZhpoi98Gf/2zxO94Y/pOvAdANSadSSO/wTXytcTuO+fMAZOE939RaxRBZ6MoWZ6nXdxg8tzxf0cPeKq56eQpYyL+xNFwV/A3rWT8eQT5Hg6VpLtCcKVPHbyWZZtuoc/aVrFw8cGyRipcockzAGhUMgJ/ANwD1BHrijaPwaDwW8U4vMvT1wTmdw5NWnaLFQmXsTqss2RCsTCzPW9tuP85eKF3LHsFp5tKf5SBmH2KHviKitQs0jLj6g6qV2iYVk23a1ZWg+neOHnEQY7DexJFtMf252gZoGL7Q9U8j//2Ic4JwnClb2pth63ovCl1rMjPfAABo0sXlVlb3iIN9TUUa05xiSuiiTxldXrSJgmJxNxlMpcEaenBjr4u1Xr+L2GRoLVNfwoamKZaezU4LgxWIleIjsfwnPjH1IZ/Bq2kQJJJt36GzLnnkN2VWEMngUuPQHY6Qjdkk6DduXWPeolI64KFhIZIznyfNSWqJ2kmEcheZxeTCRSmXhJtieMFQqFVHLffSogh0IhHbCCwWCmvJGVz7dPPM9D627mj9dv4+uHnsFGVK8RrpkKdAH3As3AZuBXoVCoMxgM/vCaP1yWsZCQL/tdTZomk5Xac5Mlnp23h/qs0RXu5KcLVvFOT4JTFWI2iHBRyRNXSYLAAjWXqK5wUt+kISsSveeydDanefmpKH3ns0x3JsehZzIEf19nw+0eDu0QF4WCALn1q/dV13EulWTn0MURS02SeE11Ld/qaLskaQX4dsc5lrpcDBhZ+rNZqh0aXHZINeRb13z6zEkkTwMVd34BgKHnvsCjPV38dk0d/3ahg92VN+CMTv6FY6UGiO7+ImpgFZLuxxg4jZ2JYOefm0hPMoZLBo+iTNpe5pIRV1kmJWm5BDkvZpr4SlRY1eP0kJR1rIwYcS2jzwIPjfo5CewEXl2WaGaAVDbJ11pO8Lmly3nvxrv53pGnyx2SMMsFg8E48LlRDx0IhUJPANuAa05cFUkhKat4rDRR+WKqmjSz6JNUpHVZWWJZMatgNth9/hXWLruFP2ry8heHezBtMcVbKEPiesO9Xjbc7qH/fJbO5gxHd8XpOZfhWotsmll46ddRtt7v5/gLCbKi3rkwz9VoGl9YsZrzqTTbAwG2+Px8q6ONjG2z1uPFsm0OxcYWPmhPp2hP577YB7IZqsZZ/+lRVDKWxaCRRV++lWz/ScxIO+5Nv8fjOx/i8b4eANxLFmNGz08pXmPw9LT2rz+Wq15crTmIm8kJXzfcx1WVJFyyTFp2YGeHRp6PGFl8UmnOF17NRVJ2gCmKM5VLMBh8GHi4vFHMPL3RHr7e6eWTDVX0rbmDx04+W+6QhDkkP9PhduDvrub9q301VOku9vS2A6DJMklJw0Oa8JjEdfw7kYqkoNtZEiJxnTW+c3Iff7VmI7+7/k7+7ejYWhnC/FPyxPXorgSHd8bJpAp/odh6OMWWe7ysucXNkefEqKswf0nA7y9czOlEgq+fa6HB4eTjS5dzR6Ca0EAfy3QXzckE5mRz8IF+I0v1ONNxR49yarUbyPYcJt36NBXBr+BYdBuZjt0AqFWrSLc8VfD9A0gnegl7dKo1jXOpiRPX4anCChIe1UlCcWGPniqcTeNVS7O+wO9wEpVLU8FYEKarpa+Zbzk9fKjSJLZiK8+c3VPukIS545tAGPj+ZC+aqPXUhqbr2KhYHE3lbjq6nS7Sksxjch2nhnpG2hNZioRuG+O2K/I4vPnX2Jc8P5tbG11uLu0LgOSA7w5G+XBFmgtrbmfPhYPlDmla5kIF75mm5IlrKl68MuS2DSf2JFi7VSSuwvy2yKnT6NR5uPkUAF2ZNLuHBrnO6yM00EeD0zluwaXL9WczbPKM/SJ0ywqJfOKqVjaRPPVz7EyM1Mmf417/IJnOF5FUHdW/iHj/qcLuXJ6V6GWwspaaK6xzHV1V2Ks5SSj6JYlrOJ1AUy3cskyiyG0S/KqDqCS+yISZ68D5w3xXvYn3e9OYy29lZ/PecockzHKhUOir5EZb777SWvKJWk/1JRL4vfJIexTFMkmj8tPDl94YDbsi6C73uG1UvBW577LewR4S+ToDs7210WhzaV/g4v4cjh7h++otvMuToNXVwOme6c3OKieRuBZeiVZ2lU7zwSS+gELtEvHLIsxf7ekUHzt9nEHj4kjimUSc5S43AA0OJ13pSxNX14a342h81SWPDWTGH3F1KwoJy0TSA0iqCyt6AYBUy1PYVhb3ugdwLt6OGT2PGe0o9O4BYCZ6GHJUUu2YrBTHpWtcvZqThKxjZy8mrv35/n+BEnzB+FWFqF2aQlCCcLWeb9vP9+Iq73Zl2L7slnKHI8xioVDoG+QKNN0TDAbHKS8/NUPpBH7r4neWQ1bI2GPXsiaMFAo2mjLOTCGHGwtIinZks86zLfv4jVXBh+urWFCxsNzhCGU05xLXdMKm/WSalde7yh2KIJRV9rJpwM3JJF5Vpd7hoMGp0zVqxFXxL8G18nV4rn//Je/pz2ao0rQxpS7c+anCincBtpHGGq4abBnEXvoWzqV3497wNpKn/qcYu5bbVKKPAdVPje6d9HWjqwp7VW3MVOFUOkpcdlI1hQrF18ovS0SsiQuHCMJMsav1Rf4tqfFed5bXrLyt3OEIs1AoFPomECQ30tp7LZ81lIqg21mccu4Goy7LZMYpwpRM587tbqd7zHNeh4uk7BRVs2epHxzbwQm8/HnTMgKe6nKHI5TJnEtcAZoPJFm6UUcWAxuCMCJqGvRk0tzgq8CjKHSOGnF1rX4jRqQdSXEgaRe/8HuzGTRZpuqy0UiPkpsqrHgXYMY6Gd2uxhw8S/jpjxPe+fmRta5FYWYYQKPaMfmaUVWSyFgWuizjUVXiqJfEayX7GVL9VLsqixdrnl+GsOjXJcwSO5v38e2oxFv1FA+su7Pc4QizSCgUagI+BKwEWkKhUCz/58mr+byBRO7maJWnCgCvohAbZ8Q1ls1NAfY4xvb4rnC6iUqixsBsZWPzrSM76cbJx1dswOv0lzskoQzK3se1GDpOppEkaFztpP24qN4pCMNOJ+Jsr6wiY1n053vZqVWr0RbcSOTZh/Bv/zyKfzFG/0kAhgyDsJGlSXfRP2rdkVvOTRWWPXWY8e4x27GS/ZDsL/r+9Bsm1erk998cskzUMKh2OPBbcF669I6WnQozpHiodhf/S9CPSWQKa4sFYabYe+5lYgvW8aFqhYqN9/CvR3eIthTCFQWDwTaYpC/NNMWTYdKSRo0nQGe0G58k0W2OrUmQyiQwkfGNk7hWag7CiGVks5lpG3z92PN8cv1WPr1mC186fYhIcujKbxTmjCmNuIZCoQ+GQqF9oVAoFQqFdhQ5pmtmGtB6NMXy6yZf+yYI882pRJxGXac7k86POUq4N7+bdEsIM9yGGe1A8S+55D2tySRN+qVT7935EVfZVZ1LUsukP52mQrLQpImvjzRJGqnkW6tIxMZM1bUZRKXqCmtlC8FrZwlnxfoqYXY52nmcL3X2sVFO8MlNd+DTxUiHUGo2XYqPRm9uZoxPsoga4/dRjMtOfONMFfarGpFxRmmF2SVjpPjbY3uIo/CZVZuodFeVOyShhKY6VbgT+BLw9SLGUlDNB1MsXqujOcVJSpj5QqGQMxQK/UsoFGrOT6c6HQqFPlLo7RyNxQA4Hs/97Vh8O7IrQPLEowAY4XOoFU0ASA4vsl5FWyrJMtelFwHDiaviqipr4tqXL6x0+VTm0TRZJuFfCkBAthkcp3Bwvwm1anEnoHgUBQcmQ8lYUbcjCMXQ2t/CQ2eOo2DzF6s3srR6WblDEuaZC5ZKozN3g7GSDOHs+LNX4pKGVxs7LkNRFAAAIABJREFUJbhClohYYn3rXJA2Unz52PMMovHZletFwaZ5ZEqJazAYfDQYDD4KjJ0TOEN1t2RIJy2WrBfrGYRZQQW6yFVf9AMPAJ8KhUJvLeRGerMZPnf2FD/p6QJAX3o36eansI3cKKAZbkPJJ67emz9M5W/9PWeTSVa43JfM+RqZKuyqxkoOFDLEaYkl+klK2qQtcTRJIapcnDY2aI6d5thpmNTLxZ3+WOXIjVr3JcJF3Y4gFEs4McQXD+/iqOXiMwuquGfF1nKHJMwjbZkMKxQTXdOpMmO0x8a/aRpDxaeO/U7wSzZhQ9QYmCsyRpqvHt1Fq+3ks0sWs7Z+bblDEkpgThZnglxP15aDKZZfJ6oLCzNfMBiMB4PBzwWDwTPBYNAKBoMHgCeAbYXe1rlUkrRlITkrUKtWkj5/sU+jOdSG4l+EpHnQanJfAq36QryqSsOoIkgeRSFuWkh6ZVkTV3O4srBj4sTVoagk5Yux92fHXrh0phJUksUlF++UWOOuJKK4yQxXYBaEWci0Db575Gn+I6HwoMvgI5vvwesc2+tZEArtlZ4WGs0I9yzZTEbSaO8/N+7r4sh4x5lB4yc74SitMDtlzQz/ePgZnjPdfKzWLdp3zQNFmxvn8/nGbSJdTD7fpV+eXWdkNmxzUNPgJx2fXdNDLt+X2W6270+pm0iHQiGVXMP2vyvWNtSqlVjpCFbswshjRrgV20zj3vxurEwUM9yOUb2OzvRRVro9HDBzx7RHUUgqLiRJLutUYSvRx4BjHbVOLzB+Au1QVGLyxVNdapw1pl2xfswqiQVOJ83J5JjnC6HG5WNQ8WFnxFRhYfbb2byPkxUL+KMmL3+1ZiPf7Ytw+MLRcoclzGFdg+c4uGQtD+rd7JDqMK3xrzFjFnjGuQnpt9OEM6lihymUmI3NI8d+Q/fyrbzHnWHFhrv592PPYtpidH0uKlriGo1GS5q4+nw+otHoZTFAuE+jbrnBsednT0GU8fZlNpsL+1PqxBX4JhAGvj/Zi67lBpFcvw6ibWNuKtide3AuuQez7SlkM4mzbiNtbQdYX1HBgYE+Knw+XIqC7avDtgy8DhscZboxIWUYUH0s8FXgi48fg645yEoqj+hrkBUdRyyMOmqffT4fmEP0a4tZVlVPb6Q4iXi9t4JB2YnPN3nf2WshbhAJpdQV7uQvDvfywLrb+dOAg71V9/Afp/cST4ubM0Jx/NOJPaxfuJ6D556d8DUxy6LhsmrzusONx0rTExMzXuaq3zTv4VztCj64QOdzm27nH84epS9+Te2DhRloTrbDGa35YJLl17lmVeIqzG+hUOir5EZb7w4Gg5nJXnstN4i8WhXmYCvJy28qHPh31HN7MAZOowZW4Gu6j2PRKL8VyFXuMxO5Y2nQcmAlB4lGI1e1/ULpt1UaZWXCmyNyvU1WUnlOaUTxN5I8/xMy+deO3FSJxuhesolazUs02lqUOCskmQGTot3EETeIhHIwbYNHju1gb81yfn+hny+t3sh/hrPsOfdSuUMT5qBUOsLLLXsmfU3MMPBcNlW43lcHQE901pRqEa7C2d6zfD7Swx+uuZkvLF/Gf0ab2N26v9xhCQU01XY4aigU0sklunIoFNJDodDEi8pmkOaDKWoWafirlSu/WBDKLBQKfYNcgaZ7gsFg3zV/oKQgTdCkW3bXYo13N9I2MfpP5P4eagbbokWrpVHXccsyHiV3LCWd1Vip8q1vHdZr2tQqE1cPd0gyWUlF0ty5YlKJ8UZUbdrQWa4Xb018g2LTbYxT0lgQ5oCWvmYeOvwcT2U03ue3+dTmu1lS1VTusIR5KGKk8XPpNNE6d4Cw7CJrTnovWJgDYukoXzn0Gx5LabzHa/GhTWId/lwy1UoknwWSwJeB7fl//7pYQRVSbNCkuy3D8i2iSJMws4VCoW8CQXIjrQWZ3+K77ZMEXvuPY3qzAsieOszEFTZjGRiDp+mrXEPcNFjmcOJRVCzbJquXtxXOsL50atJerm5ZJqk4UbwNSLKKmRz/fsDZdJYmxaBYDbTq7TSdabG+Spi7LNvisZPP8em2DmK2xMMLArx3w914tOJNjxeEy/Un41Ral9YqqNU99MvF79UtzAw2Nr88vZuHOnqolUz+evVGtjbdWO6whAKY0lThYDD4MPBwMQMppuaDSTZs83DgabHuRpiZQqFQE/AhIA20hEKh4aeeCwaD913NZ6rVa1EDK8gOnEZf9XriL31r5DlJ8yJrbqx4zxU/J9t3Aq12Ay0dB1nscBJXkiRME8lfgxkv/7SrnlQMVKhzODk/TmLokSEp68h6JbZlYKeGxv2cs+EedJ9Fo1Ono8AJZkDVcGJyPj7+tgVhLumN9vB/Dj/Nuvq1vKPe5PONi/lV7SqePLuPjCFu3gjF1Z8YxFml4nF4ieeL4dU6HPRZxbotKcxUF4Y6eDh8gd9efTvv82W4c/Pd/N/W43RHOssdmnCV5vwaV4DWwylufb2fmkUafR2lrXQsCFMRDAbboLCDffrK15M5/wLpc8/iu+2TpNt2YobPYWdjyJ5abNua0oip0Xcc1+r7aT+bYZFLp0NRiJkmsquKbN+xQoZ8VRKJfgYq3TQ69fETVwkS+TvtVqIXGL/CeLTvJJ3VG1lTUUtHT3tBY1zoqSAlORgIF/ZzBWEmO959gs93n+TuNbfxOqfJa9Zt4Rcplaea94kpm0LR9Mf7gVqqvdXEB3KJ60IFTmZEldn5yLItfn7yWZ731fOuZZV8cckCfmWu5rHTe0mLG2mzzpzt4zpaOmFz/kya5deJaSLC/KD4l6DVbyZ5+nGM/pOYkQ782z6F99aP5J531+aSVtu84mcZQ80AdCh+GjUHlarGoJHNrRdNlr9Co5Xoo9NZx2J97PGtyzKKBDVVu9HU+KQ9Z61ED8cdDVxXWVPwGBt9tfRolVgzYIRaEErJxmbfhUN8/PAefpaQuNdl8pX1N3LfqttxqOI7WSi8jJEmJutUuytGHltoJ2iPl7eQoFBevdFuvnroab4dtrlVM/nyui0EV7wKWZoXqdCcMW/+bzUfSLFss474/RTmAzPSTuTZh7FiuekwkV1/RWTXF9Gq1yC7qpE9deMXZhqPZWAMtXDBvYhaTWOB08mgYSA5/TNijauV6KXLWcci19jiC958Iamlq15kmeu7JI79cNLPOpwyWacx4XrZq7XE7eOC5GKi0V5BmOtM2yR09gX+/OhLPJmSuddl8fV11/HAujvx6eMXkBOEqzUo61Q7PQD4XRX4rSTnwl1ljkqYCV5sf4VPHN7DL1IKb3Zb/M2mbdyy5HqkolW4EApp3qRx7cfTqJrEwhWzohiyIFwjG3Oo5eKPZhqj/wRmvBu1dj2yuw4zceX1rSNvj7TT611K1rbZ4vMzZCtIkjzpCGapWMkBLqgVLHKNLcBWpTnIIpF12sjxk5f+NxnHsa4TGLLGZn+goDEu1SRaTfGlKAhZM8MvT+/mY4f38sOYzQ2azddWruI9G+5mQcXCcocnzBH9tkqdMzei3xRYTFrS6ImIxFXIMW2DX57ezUdPHuYVQ+H9foUvbt7ObU03igR2hps3iauRtTl3LM3qm93lDkUQysboP4UaWIXiqZ/WtFUz0o5U0URXNkOFqnEBJ7aZxc7MhKlXNm1ZkzpFwq9cumy/RtMYlJwgwVQGUVM9R3jFvYLtdWOrMF8thySxkDTNcVEcThCGmbbJsy37+NShZ/nWkEGjYvPXi2r5xOa7uWnxFnHxKFyT81mTRjX3O7SuooYW2Y8tZrwIl0llEjxybAcfPXOKg1mZd/lkvrT5drYvuwVFEm00Z6J5k7gCHH42zuK1TmoWiSb3wvxkDJ5FDazItcKZQkXhYWakHcW3kDPpNACtsn9G9HAddj46wCAaG7yXtt2odzjpV6fRCss22ZW02OyAaq0w54klbh82Em395wryeYIw17zccZAvHvoND3UO0WvBBypUvrr5Nu5fcwd+V8WVP0AQLtORiLKQXOGd1ZrEycyV6zkI81c0FeGHx3fw0dPH2ZeRebsXvrbxFt685g6xlGGGmVeJ61CPwZlXktz0WtGIWJifjMEzqBVLUNw10xtxjZ5HklWeSMt8ta2ZXmfNjJgmPMyMtnNCX8QW36VfMMtdbi64qgCQprhu9WTLLlr1hbyuYVlBYltX1UiHs45UuLUgnycIc9W5gTa+d+QZPnzqGL9OwjanzTeWL+dPN9/DzYuvFyMgwpSdHuigyoyzonYFy8whjg6I9ifClcXTMX56YicfOX6QxxOw1WnztZUr+cDGe1haXZhrAuHazKvEFeDA0zFqGjUWr3WWOxRBKDkz0nHx39HzU36fnU1gpSOkXXUcikWRXVUzojDTsGzvMV6uupkbfZV48gWZdFlmrcdLW2B6037N6HmepI47/W5qCjDqusHr44TkB0u04hKEqUhlEvzy9G4+ceg5/rY3TtSC91Wo/P3Gm/i9DXfTVL203CEKM1xvtJsLSgUfaahlUPFwsudUuUMSZpGMkeapsy/wiUPP8Q+DGQKyzUMNfr6w+U5es/I23A5PuUOct+ZFH9fREhGLo7vj3PRaH+dPp7HE7BFhPrFNkiceRdLcYE2vp50Z70Z21wEgu6qnlfgWmxXv4qTtostW+J26Br7feZ67AtXELJt2fy3LYFpdcl8+/TRnVl/POxZn+Wbz0auOS5MkVspZnognrvozBGE+O9lzipM9p/i+6uSWRZvZ7oeHGyroaryD/RmJF7rOcGFo5pyLhJnj0cEobw+4+K8BUV9AuHoHzx/h4Hmo9dXx6kWVvM4ND65ey8tSJTt7L3C864RYP11C8y5xhdxa1xXXu9i43cOhHfFyhyMIJZU8+d9X9T4r1oXsyiWu1fVZtr12Nz/5O4lMamacsLOd+3nEv5UPS7tYortY5nLznZQHO9MHgDKNs50ZaeeH6W18xuXgxooAL4Wvrl/t5opqDFnl1IWTV/V+QRByMkaaXa0vsguo8tTwqoU+bnap3N9YQ8eSFexPwwtdp+kKiymhQs6L7a/wYnu5oxDmit5oDz8+3sNPkNjcuIE7q+HPalx8JlFPt6hYXTLzMnE1Mjb7nohwx4OVNB9MERsUw67C/FK7WCPSb5BOTD3pNONdaPWbcu+vG8LhtKhaqNHVnClWmNOSanuG83f/LV9seZotRPlpTxfnb/gzqob2AqBq06tS2nr85zx+8zt5XyO0xGMMGNOf6ntb7WIOuJaTHvzRtN8rCML4BuJ9PHF6F0+QGwXZusDPzbrCmxbVcb5pFQeyMi/3dXC296wYCREEoaBs7Pwo7BF0zUUqmyx3SPPKvFvjOuzcsTSdZ9Pc+tuiUJMw9y3forNhW64VlDeg8Pr/Xc1tb55etU4z1oXkrgNZxevNTb3yVc2cYilWrIt081MMXv9H/EJrom3lg8jehVi9+4DpJ662keSJU7todS/hIyvWo8vTO116FIXNDtibyIC4eBaEouiN9vA/p57j84d28PH2bnYnLVZqMp+u8/L3m27lDzbew02Lt+BQRV0LQRAKSyStpTcvR1yH7X08yps+XEPTRidtR9LlDkcQCkaSQXNKZJI2lXUqdzxQCUBvR5bGVbkLuAXLHUgS2BPkVE0bnHSezYxMBbZiXUh6FYqnAa/eC4AvUPjE1emWCL47wJP/PDDtNeiJo/+F27Zwb3oXVqKH6At/S2BJEnBOO3EFyPaf4Nv+hXyiooYPLVvHN5qPkZ3oP9hl7qldRL8W4FDLK9PeriAI09cd6eKJSBdPAB6nl+sXrGWLD95XoaFWbKBZruRo2uBwfwetfS1iNFYQBGGWmdeJa2zQ5OWnorzq/gq6W/pIxa1yhyQIBRGoV7n/j2s49nyc6oUazQeTSBKs2+qmbomDF38R4abX+qisUxnszhVpqqxTec27A+z80RAOXeaudwR45ekoB5/JrQM38+1ztLqNePUzRAeMooy41i52ULvIgadCITowzczVNkkc/QGJoz8YeUhdmevjqjimn7gChFue4Zsb3sKfebN8bMUGvt58jJQ1+bnCoyj8VnU1P9MWYYafuartCoJw9eLpGLta97MLUCSFNfWr2RTwc6Mu8+Z6P4kFt3ACL0cTcQ73NNMbnXpfa0EQBKE85nXiCnD8+QRN63W23u9nx38NlTscQSiIwS6DX35ngFe/vRJZhh2PDOGpUHjDH1ZjmTan9idZeaOL2iXaSOK6YouOp1Jh86u95DvKULfEAeQLmJlp7NQg7kXr0B0HaD6Rpn6po+Cx2/kRTZdXnn7iOo7hkdarGXEd1nX0J3xl/Vv4E5/G51cp/J+WE3RmJp6l8bbGFQw6qtjZKkZbBaHcTNvkWNdxjnUdB3KjsRvrV7PRD6/zqLx7yQL6lZWctV2cSiQ4PtDB+cEOMSIrCIIww8z7xNW2YfejYe7/UA2rb3Zx6kUxX12Y/Wwbuloy/PSrvUgyZJI2yajF8z8Lk4hYZNM2ve1ZahdrI7/zS9brnNqfYPVNubWwL/0qyvrb3Jd+brKX2iYfhqHQfiLNqptcuTYzU7i+k+Rc8phNT/5ipzu3llTTrz7RHE3Nj7SqVzniOqzn2E/48op7eVfNGh5eKfHT7gs83d/D5an1a2vq2erz8hV5CZne0DVtUxCEwounY+w99zJ78z/X+upYW7OUNR64x6Pyu3oV8UULOCv5OJ3OcGqoh+b+VjKGWFIkCIJQTvM+cQWI9Jvs+mmYOx6owLbg9EsieRXmhsuTxNE3Znpas1wf9CJJ4K9RqKhV+dX3BlBUCSNj03okxY2/5cPplkaqD9uJbuoqwvT1eBjq6URzyHj8MvHwlafZv+p+Pyu2uHjkb3omTV71fOLq0AtTO051SGRS1jWNuA4Ln/013wqv59Vr7+Z+5UV+q3YBLwz00JZKoEkyN1dWsdHr53uV2zn14ncLEL0gCMXWG+2hN9rDc/mffbqfNbXLWeOzuMGp8MYaN1LNOroUP62WRruR5URfB+f62zBt0ZVAEAShVETimtd6OAXA9rdUgASn94vkVZjb2o6luPW3fay4wYW3UqHnXIZExOK5H4dzL5ByraMCDRdb3ng5xrL6VnY9BsmoRTJmUrNIIx6efCRCVmDpJh1Fk1i81knzwdSErx0ecXW4CjTiqkmk4hbeysKsxzX6jhHa08xLa97Ittp6NrrPsC3Tj4lEi3sJf6ct4ezL/4qdEU3vBWE2iqYi7G8/wP78z6qi0VS1hBUVbpa7NO5wwoP1fsyG6+iQ/bRbCu2pJOei/bQOtpPKJMoavyAIwlwlEtdRWg+nsG2bOx7IrQs8uU8kr8LclU3b7P2fKLe92Y8kwe6fRS59gQ1DPQaBepWu5gySBDdtPUnrUYmWF3OFTLqaMzQsd9B2dPLEdeHKXCXjlkNJGpY7ppa4Ogs34pqOW/irVSQZ7ELUYDNSDB79IU+oLn5VtwnVvwhsMFpPku35MaL9jSDMHYaZ5WzvWc72ngXA5/ORSWZZXr2UFRVuFjsV7nBrLHB6UGtW0a94OY9Oe9bkXCJKe7iHrnAnpm2UeU8EQRBmN5G4XqbtSJpn7SHueLASp1vm0I54uUMShKI580oS07SpalA5+8rYGzWD3VkC9bnTxIotLjyVMk9+92L1za6WDOu3eYDopNtZtlkf6Z18fXDy3sl6gUdcnS6ZeMSiFtAc0kh7n0KwjSTZC/vIXthXsM8UBGHmSxspjnef4Hj3xccUSWFhoJEmv8Zit4MmTWab30GltwqzsZp+xUs3TjoNi650kvOxIS5EOokkw+XbEUEQhFlEJK7jaDuaJvT9Qe5+ZyUun8y+x6MT9roUhNmu5VCKlkPjP9fXkWX9Ng+qQ+L6e70cfz5DJnnxYGg7mubWN/ipXazR254d9zM0p0TTep1n/nOQoR6D7QEFX7VCtH/8tWEuX2HXuOoemc6zaZZu1HH5ZDIpk+0PVFDTqPHsD9JXyrkFQRCmxLRN2gfO0T5w7pLH3Q4PCyoaaPQ6WOhSaVAVNqoO6nQ3as1S4rKTHslNn63QZ5r0plP0JKN0x/rpi/ZgFWSaiCAIwuwnEtcJdJ7N8OR3BnjNuwK4vArP/WQIc/zrckGYs1qPpLjl9X7u+0AVRtrm7EuXTnVLxS3aT6ZZc4ub3vbxRw1WbHGRTlh0ns1g27lR3MaVTk70j10H1rTBSdUCldiQiaNAVYWH2+qkEhbegILbp7Bsk04mZbPiBo3+XxZkM4IgCONKZOKXTDUeJiFR52+g0V9HvctBrUOmUVXYrDqocblwBuoxaWBQ8dCPkz5Los8wGMikGEjF6U+E6Y/3kcqKZU2CIMwPInGdxMAFgye+PUDwXQHu/2ANL/w8QldLptxhCULJpBM2z/93mKaNOvt/GcW23GNec+S5OPe9v4pDO2JERo+iSuB0SVx3l4eDv4mPzFq4cDpD42oHJ/ZemriqmsRd7wgA0NWSwuUtTDEll08mFbeIDZpU1Kgs26xzYm+CSL/Jhm1e9onEVRCEMrCx6Y500h3pHPd5v6uCel8ddW6VWqdCraax0qEQcDipdFu4AwpQRVJyMCTrDKExaEkMmCbtiSh72l4q7Q4JgiAUmUhcryA2aPL4P/WzJejl3vcGaDua4sUnoyQiYuqOMD+cPZDi7IFcMSXfOMtTe89l6TiZ5rY3V/Cr7w1gW7BghYO731lJJmkT6Tc5+eLFJLX1SIr7PlCFyyeTjF48jnzVFxPVjpNpNm73XHPsLp+MQ5cJ9xl0NWe46T4f2bTN0/8+BMAtr/NNOs25mNwVMtvfUsHJfcmRquaCIAjDIskwkWSY0xM8r2suqjzVVLsrqdZlqhwyAVWhSZOp9FWyp6TRCoIgFJ9IXKfAyNrsfzLKmZeS3PoGH2/+SA1Hnotz7PnEpP0oBWG+eP5nEe7/42ruensl7SfT3Hivj6Fug66WDIefjV9Sybe3Pctgt8HG7R5e/MXFBaaVtSqphMWv/3UAWZbwVCjXXAW4eqFGJmURH7I4ujuOyydz9pUkqXjuQ7vOmqy8wVWWxPWG1/hYsNxJoF6j40QaIyvOJYIgTF0qm+TCUAcXhjrKHYogCEJJFKb6yTwx1GPwq+8NsvvRCMu3uPidj9ay4XY3ilbuyAShvFJxiyf/ZQAk2LTdw6n9CZ745wFe+nVs3Cq++56IsG6rmyXrnSOP1SzO9YsduGAw1G1g21CzaOzBJSuw/Dqd17wnwFs+Vsu97w2wbLOONM7ZbOkmnfOnc616ktFcj9oLZy5O9289ZLD8Oh3dU9pTYfVCleXX6Tz+rX6MjM2qm1wl3b4gCIIgCMJsI0Zcr0LrkRRtx1Ks2OJiy91eNt/p5fTLuel+Q92GGDkRrkooFFKBrwK/R+6m0k+ADwaDwcmbpM4Q0QGTZ/5jaEqv7W7NsveJCK9+WyWtR1IMdBqsvMHFvsdzvWSNrM2FM2k23u5hxyND2HZuRLZpg5M1t7qRZYkzLyc5vT9JdaPK1t/2c/PrfJx9JUlPW5Zs2qZxlYNlm/RcQj2BzjMmQ90GW+/3szO/nWJTHRK3vbmCMy8n6evIcmRXnE13eDj9UhIjI84dpTDbjzVBmA3EcSYIQqGJxPUq2RaceTlJ88EkS9bprL3Vzfrb3EhAdNBksNtgsMsg3GsQGzRzVU3jYl2sMKlPA3cCG4Es8BjwN8CflTOoYjm5N0n/eYN1W90sXuvk+PMJzh68uNZz/y+jvPZ9Vbzzc/VIEiiaRG9HhldCMZoPJDHzBY5bj8CBZ2Is2+Ri2SadVTfmZkEMdRs8/e+D9HVMPg342R+Hed0fVHHvewO8HIrlpg0XIX90uCQWrXFy3au9I8sPAE7vT7D6Zhd3vaOSXT8Jk4yJ80QJzKtjTRDKRBxngiAU1JQSV3HXbGKWmRuBbT2SQlGholalsl4lUK9S06ixYouOp0JBViSMjE1syCSdsMikLbIpm2w692f0z5qqEI85MQ0b0wDLsDHN/L9NG9vKJc6WZWPbox6z849ZYFkU5eJ7OiQZJAlkNVcxdvjn8UxlpGvKo2HjvM6+/EH74mcOf+4MaJX3fuDPgsHgBYBQKPQw8EgoFPpYMBgsf3RF0NeR5bmfjN9GJ9xr8tOv9VHTqGFZNuFeg3Ri/F8CM5u7kXTm5em3hYgOmDz2j/3cfJ+P+95fRSZtM9RtEBsyySStkWPUsmywL/2dAVAUkBUJWc39rSgSspIbWdU9MrpHxu1X8FYqJKMmp/YnObwzPjIzwzQg9P1B7nxrJW/581q6mjP0dmSJDZkkwiaZlI2RsclmLIy0jWHYWOaM+H2dzebdsSYIZVCw48zpkkDiku8Af7VCOmlN+L0gCMLcM9URV3HXbApMAwY6DQY6L+11Kcng9sv4AireSgWHS0JzSmi6jMMp4amQqdRVNKeEQ5fQHAqSpKFouQtgRZVQ1KvraWmZNpYF9qiE1rZsLBts82Lya+cfRwJZzn1BSMN/ZCn/9/Bj0qjnyL1Hyr9Hzr9/jGuvEFtsj/x1T9lGxUOhUCWwGHhl1MMvA8OPt5UjrnIzMnZJWlAloxbP/ijMnsci1C914K9R8AYUnC4Zb6WE6pSQ88cBXDw2bHI3rywzd3PJMob/DWbWZrDLIBW3SEYtBruyRPrNcW/AJMIWT/7zAHVNGo2rnNQu0mja4MTtU9B0aYJjKn98Dx/HloRp6rmE1s7fmxm5QWNf3O6o5+xRz1/y3HRM8w1HnovTfLB8VZQLfaxJEujewq6R1r0SxhwqQSH2pzxSMaskyx/GU+jjbO2r3Fx/jw8ja2MauesZ3SNjGjaJiDlys/7y/bXHPHDJX8iyjGU6phPKjCXLMpY1N/YFZs/+hL4/KDqNlNBUE1dxd/oa2BbEhyziQ1O7APf5fESj0TGPy8MjO/LFhFJWRv1bzieXo/4ty9LFv4cTS+Xi6Ofw85KcSz6HL3BH/lhjfx4ZdbKGH7edXJ0RAAAN+ElEQVTH/Rk7lyi73W7i0fiYkapJSZP+OOGDU37dSAZyMQlJJ8v6qzzcaGb08OPQZc+NfZPPRzZb2oq4vvF64sxil+/P0Pncn5xr/Z2QACX/R8PrnfzVyQE4sxfOcOnNr9ysBdAcF0d2c8d17rwwfIwPnw9Gfuel/D9H/Q0XXyNx8SYVo54vplTEgc83fkU7TStJpbtpH2uTHWe6V+L1fzy2v/G1K8ZnlpPYn1J74h8SpGJjv3Rn6nEGEx9rLS9B16kEbv/weU4iGbX+X3t3HmNnVYdx/NuNUmyhYUepglJQ9iUYIUJZflFMFDAaEMqmxSiCrBJQEDBBFhEqq2gqLWUREBolAgo/1hIQgQLFlkUahNJCKdiWVvbp+Mc5l3l7uXfmztz7vve9Z55PMpmZc+77vudM5jkz57zLZdSYoQwfGcbCj8a3ni9W8bErvoYArCxi2CtIav+Od0Z/Ro74BMPq/EYXlLVBpc+Jq84ElUflzE6Pzrg8pmtMN8uXd7W7GWVXWalYC3gjfj22qu7jGy1fXujEtd6iSqdKqT8p9KWgP/L9zlpvOVuxAm48b0VLGzh69GhWrGjtPttJ/WmPemdcy5oz6D1rb9W+q6QpKYybFSn1BdLojyaurdfIGVedCWqDlPoCnd+fvAcfM1vq7vOB7YF5sXgHQtbm53pwkUGk1Vnr7g6XmrfScLpbvs92Un8GH/1NE5E8NDJx1ZmggqXUF0ijPwWtmk0BTnP3hwn3kp8FTNXl+CItp6yJ5E85E5GW6vPpAmZWWR3bPlOsVTOR1jsHeBCYA7wAzCU8GE1EWktZE8mfciYiLdXow5m0aiaSMzP7EDg2fohITpQ1kfwpZyLSao1OXM8B1iWsmg0F/kQfq2ZF35A8YsSIZG6CTqkvkEZ/ytp+5aw5KfUnhb6Utf3KWXPUn3Ipc9uVtYFLqS+QRn86vf1l1NDEtZ+rZmsCTJw4sYlmiZTWmqz6oLJ2Uc4kZcqZSP7KkjNQ1iRtZcpaR2v0jGt/vAJ8Gngrh32LtNOahN/vMlDOJFXKmUj+ypQzUNYkXWXLWkcb0l3rTb5ERERERERESqLPpwqLiIiIiIiItJMmriIiIiIiIlJqmriKiIiIiIhIqWniKiIiIiIiIqWWx1OFW8bdpwEHA+9nivc0s0dj/XDgQuBQwiT8ZuBoM3uvkfoiufuKqqKRwDNmtm2sn0YTfS2Cux8NHA5sC/zDzPbI1I0GrgT2Bd4D/gD81My6W1Ev+UkpZ7E9HZ015SxNyhmgnClnBUgpa52es9gGZU1aptQT1+gKMzu+Tt3PgAnA1sAHwK3AucCJDdYXxsxGZ79399nADVUva6avRXgVOA/YGdilqu4SYD3gM8BY4C5gYSxvRb3kK4mcQRJZU87SpZz1aHd/lLO0JZG1BHIGypq0UKdfKnwkcLaZLTSzxcBZwHfdfWiD9W3h7l8EtgSm9WOztvfFzGaY2QxgUbbc3dcgrPidZmZLzOxF4AJgUivqpe06MmfQmVlTzgYt5Uw5k2J0ZNY6MWegrElrdcIZ18Pc/TDCis1VwGQzW+nuY4FxwBOZ184irLiMc/dlvdUDLxXR+DomAXeY2cKq8gH1lfb2BWBzYDXgyUzZLGArdx/WbL2ZdeXZeAHSzBmklTXlrPMpZ8qZclaMFLOWUs5AWZMBaPtKbR8uAbYgXAZwJHBc/AAYEz8vy7x+aaaur/q2iCtE3wGmVFU109d2GwO8bWYfZsqWAsOAUS2ol3wllzNIMmvKWWdTzpQz5awYyWUtwZyBsiYDUOqJq5nNMrPFZtZlZg8TrpE/MFYvj5/XymwyNlPXV327HAC8DdyWLWyyr+22HFgjPgSgYizQBbzTgnrJUaI5g/Syppx1MOVMOUM5K0SiWUstZ6CsyQCUeuJaw8rKF2a2FJgPbJ+p34Gw2jK/r/r8m1rXkcDVVStEtTTc15a3sP+eJzzRbrtM2Q7A3HipRrP1UqwUcgbpZU05S4tyVs7+KGfpSSFrqeUMlDUZgFLf4+ruBwB/I6yq7AScClyeeckU4DR3f5jwtLSzgKlmtrLB+kK5+xbArsD3atQ129fcxVWtysdQd18dWGlmb7v79cDZ7n4QYcXrJ8BlAM3WS75Syxl0dtaUszQpZ8pZEf2S9LLWyTmLbVTWpGXKfsb1GOBlQiCvA64gvB9VxTnAg8Ac4AVgLuHR343WF20SMNPMnq9R12xfi3A64fKLC4Dd4td3xrrjgDcJfXgMmAFcmtm22XrJT2o5g87OmnKWJuVMOZNipJa1Ts4ZKGvSQkO6u/UevSIiIiIiIlJeZT/jKiIiIiIiIoOcJq4iIiIiIiJSapq4ioiIiIiISKlp4ioiIiIiIiKlpomriIiIiIiIlJomriIiIiIiIlJqw9vdgMHC3fcA7gXGmdkrbW4OAO5+FnCImW02gG1HA88B+5vZo61uW9WxxgD/Br5qZk/leSzpfMrawClr0ijlbOCUM2mUcjZwylmakpi4uvsk4EpgbTNbnimfDXyhTvkTZnZ44Y1tA3ffGJgP7Glm97Vot6cAj+U98ACY2XJ3v4jwptqW9/GkPmWtd8qatIJy1jvlTFpBOeudciZllMqlwk6YhE/4qMB9XWAr4NUa5VsDdxfcxmS4++rAUcDvCjzsNGCCu29d4DHl45S1Ailrg5ZyViDlbNBSzgqknEkrJHHG1cxecvd5wN7AX2PxXsC/gAdqlA8hDj7uvilhNeZLwFhgHvArM7sm1n8f+DWwoZm9Uzmmu58CHEu4fGOlu28GnB+P1Q08CpxkZk/Xa3df27j7EcAUwuB5KfB5YA7wQzN7PLMfAyYD44HngR8D9wGHmtm1hBUzgHvdHeAlM9sks/1+sR3jgH8CR5rZvHrtBvYBRgF3ZvaxCfAicCBwaOzTa8CZlZ9lfF13/Ll9Gfg68CZwInAXcAWwL7AYONnMbqlsZ2avu/tDwCHAqb20TXKkrClrkj/lTDmT/Clnypl0nlTOuEIYTPbOfL8XcE/8qC5/1swWxO9Hx233AbYBfg9Mdfc9Y/1NwGrA/lXHOxS4Ng48GwAPAq8DuxEGsueA+9x9vVqN7cc2Q4FzgeOAHYElwE3uPjzu51PArcAjsf4E4KKqw+0YP38L2AjYOVO3EWEFbCKwK2EAvqpWmzMmEC6X+bBG3XnANcC2hJ/dVHcfX/Wa04Dbge0IfxSmAzcQBqAdgNuA6e6+TtV2jwB7Iu2mrClrkj/lTDmT/Clnypl0kNQmrlu7+/rx+70IN7TfD2xZVe6VjczsaTO73Mxmm9k8M7uU8Mt/cKxfBvwFOKyyjbvvSLiUZHosOgr4j5kdFff3HGFlaCkh1LU0us0Q4Hgzm2lmzwJnAJ8FPhfrf0QYwH5gZnPN7G5CuLMWx8//NbPXzGxxpm4kYXXt8Xjz+vnAbvGSjno2BRbUqbvMzG4ysxeA04F3CT/zrBvM7Or4mjMJK3AvmNm0WHYGsAawS9V2r8S+S3spa8qa5E85U84kf8qZciYdJIlLhaN74ue93X0m4Zf0fjNbFm+or5SPB06ubOTuaxB+2b9BWEFajRDIezP7ng7c6u4bmtlrhBWzx81sTqzfGdjJ3VdUtWlUPF4tjW7TDWSfhlYJ/QaEVbYtgUfNrCvzmofrHLOWhVWD0QLCgLc+8HKdbUYBy+rUPVn5wsw+dPdFsa1ZT2Ves9jdu4DZmbIl7v5+bEPWu/HY0l7KWg9lTfKinPVQziQvylkP5UxKL5mJq5m94e5PES7tWA2YFVe8IAwklfIuwjX8FRcA+wEnAc8C/yPct7BW5jV/J6w8TXT3i4GDgHMy9UMJq3bH1GhavZA2us3KqoGlO7N9dVm973vzfp1tezsbvxhYux/7q97XBzW2qy6rtd3a9KwASpsoa6tQ1iQXytkqlDPJhXK2CuVMSi+ZiWt0N+Fa/BH0rKJBGHwujeWPZQYlgN2B68zsRgB3HwpsDiyqvMDMutz9esIlH88QQvDHzD4eA44AFljmJvw+DGSbWuYCB7v7sMwgVX2ZRGVAGNbEcbJmUXvQzNs2hJ+btJ+yFihrkiflLFDOJE/KWaCcSemlOHE9CVgH+Ham/AHCU8++SRiEsp4D9nP3W4AVhKeUfZLM4BNdHet+CdxRdYnEZcAk4M/ufjbhSWwbA18DbjOzh2q0dSDb1HIF4ab637r7ZGDD2EboWQF7I/btK+4+B3jPzJY0uP9a7gAudPdxZja/z1e3gLsPIfyh+HkRx5M+KWvKmuRPOVPOJH/KmXImHSKlhzNBGGQ+AFYnPHUNADN7C3gcGEPm5vroBOAlwsra3YTr9G+u3rGZzSZcg789PTfWV+oWEVaq3gBmEAa064DPEN4L7GMGsk2d/SwgPAZ819i+iwk3tkO4rh8zWwkcDRxAGOSeaHT/dY75DPGR6c3sp5/2IDzF76YCjyn1KWvKmuRPOVPOJH/KmXImHWJId3d/LmmXTuDuuxOeiLet9fJeYE0eYzfCY8jHm9nbeRyj6ni3Ex6YcH7exxJplLImkj/lTCR/ypl0gtQuFR6U3P0owtPWFhKeFDcZeCSvgQfAzGa6+y8Ijzef09frm+HuYwhPu/tNnscR6YuyJpI/5Uwkf8qZdCKdcU2Au59HeO+wDYDXCG/GfIqZvdnWhokkRlkTyZ9yJpI/5Uw6kSauIiIiIiIiUmqpPZxJREREREREEqOJq4iIiIiIiJSaJq4iIiIiIiJSapq4ioiIiIiISKlp4ioiIiIiIiKlpomriIiIiIiIlNr/AV6Iz3uAKh2TAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "dark" }, "output_type": "display_data" } ], "source": [ "# now we will see the various quantities for a similiarly sized homogenous sphere made of different materials \n", "num_pts = 1000\n", "dia = 350\n", "lam_min = 400\n", "lam_max = 1200\n", "\n", "\n", "lams = np.linspace(lam_min, lam_max, num_pts)\n", "kr = np.ones((num_pts, 1), dtype = np.float64) \n", "m = kr -kr + 0 + 0*1j\n", "kr[:,0] = np.pi*dia/lams\n", "\n", "fig = plt.figure(figsize=(15,3))\n", "\n", "#gold\n", "m[:,0] = get_nk('./materials/gold.dat', lams)\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m)\n", "ax = fig.add_subplot(141)\n", "ax.set_title('gold')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, Qsca)\n", "plt.plot(lams, Qabs)\n", "plt.plot(lams, Qext)\n", "\n", "#silicon\n", "m[:,0] = get_nk('./materials/silicon.dat', lams)\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m)\n", "ax = fig.add_subplot(142)\n", "ax.set_title('silicon')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, Qsca)\n", "plt.plot(lams, Qabs)\n", "plt.plot(lams, Qext)\n", "\n", "#silica\n", "m[:,0] = get_nk('./materials/silica.dat', lams)\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m)\n", "ax = fig.add_subplot(143)\n", "ax.set_title('silica')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, Qsca)\n", "plt.plot(lams, Qabs)\n", "plt.plot(lams, Qext)\n", "\n", "#silica\n", "m[:,0] = get_nk('./materials/tio2.dat', lams)\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m)\n", "ax = fig.add_subplot(144)\n", "ax.set_title('titania')\n", "ax.set_xlabel('Wavelength (nm)')\n", "plt.plot(lams, Qsca, label='Sca')\n", "plt.plot(lams, Qabs, label='Abs')\n", "plt.plot(lams, Qext, label='Ext')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:11:30.929755Z", "start_time": "2018-09-18T17:11:30.464166Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsQAAAGoCAYAAABBi/M/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8XFX9//HX7JNlkrZp03RLm66shbIJIpscBNxQxBUVd1G+iChfQZavxYXlh4qCCyoKKriLCCIKBxBKCxRa2lKg+5KtSZo0yUxmX+7vjzvFEJo0mUzm3pn5PB+PPtq5986976Y9mU/OPfcch2EYCCGEEEIIUa6cVgcQQgghhBDCSlIQCyGEEEKIsiYFsRBCCCGEKGtSEAshhBBCiLImBbEQQgghhChrUhALIYQQQoiyJgWxKCit9X+01nce5JjlWutthcokRDnRWhta648Oer1La33toNcHbaNCCFFq3FYHEEIIUVAzgL4R9p8PpAqURQghbEEKYiGEKCNKqY6D7N9XqCxCCGEXUhCLUdNaVwA/BD4IZIDfA/3A+5VSC7XWDuCrwBeB2UALcLtS6gcjnNMH/AD4SPacf2Dk3ishxEFord8C3AwszW7aAXxNKfVvrbUBfEwpdc8w7/0PsE0p9ZlB2y4BLgEWYLb5p5RSF2T3BYDvYvYsB4CNwNVKqUey++cBOzG/b3wMOBPoAL6hlPptHv/aQgiRMxlDLMbiZuA8zA+1EzE/GL84aP8XgW8BNwGHA7cAN2mtPz3COW8C3gd8HDgJCGN+8AohcqC1dgEPAM8Bx2R/LQciOZ7vesy2/xPgSOAcYN2gQ34FnA18FFgGrAT+obU+ZMipbgJ+i1mk/wm4S2u9KJdMQgiRb9JDLEZFa10FfB74olLqgezmr2utzwCmZl9fhdkj/PPs661a6yXANcAvhznnF4BLlVJ/z26+Qmt9OjBpYv4mQpS8GmAy8IBSamt229YRjh9Wto1+DbhOKfWjQbvWZvcvBC4A3qGU+nd232Va61Oy7/vUoPf8SCn1p+z7rgX+B3hrrtmEECKfpIdYjNZCwAs8O2T7MwBa6xrMYRJPDdn/JDBPa115gHMuAHzAqiHbnx53WiHKlFKqF7gT+LfW+mGt9VXZH0xzcTjgBx4ZZv9h2d+Htvunsu8d7LVeZaVUCugEpueYSwgh8koKYjFWxhj3O0Y4dv++g51TCDEGSqnPAscCjwKnARu11p8fxynH2kYdB3hP4gDnlM8gIYQtyDcjMVrbMD/QThqy/UQApVQQaMX88B3sVGCnUupA4xf3n/PkIdvfPO60QpQ5pdRGpdT3lVLnYg5Z+lwOp3kFiGGOET6Ql7O/nzpk+ymD9gkhhO3JGGIxKkqpsNb6Z8C3tdadwBbgIuBQYG/2sBuB72mttwL/wRwf+AWGeUgue847Bp1zM/Bp4BCgawL/OkKUrOy43s8CD2LO9DITs0BdO9ZzKaUGtNbfA5ZrraOYPc4VwNuVUjcqpbZrrf8M/CTbA70bs80fgTlzjBBCFAUpiMVYXIk5nvB3mFOk/Q64G3MaJYCfAlXA1ZhPpLcAVyml3vBA3SBXZc+5f/qlPwI/Bt6f5+xClIswsAhzCsNpQA/wEHBFjue7DvOH3i8BtwK9vH7M8GcwZ5S5B/OBvpeAdyqlNuV4PSGEKDiHYcjwTZE7rfXjQK9S6n1WZxFCCCGEyIX0EItR01ofiTmn6TOYM058DDgDeLuVuYQQQgghxkMKYjEWBub4wNswH8jcBLxXKfWwpamEEEIIIcZBhkwIIYQQQoiyJj3EwM033+zAXFQiaHUWIcagBmi98sor5adapB2LoiZtWQiLSUFsmg00Wx1CiBw0Ys7mIaQdi+ImbVkIC0lBbAoC3HvvvSSTyTfsDAQChEKhgocaLTvns3M2sHe+kbJ5PB4uvPBCkN7QwUZsx2Dvf2+wdz47ZwN755O2LIT9SUE8SDKZPOAH6XDb7cLO+eycDeydz87Z7Gykr5vdv6Z2zmfnbGDvfHbOJoQwydLNQgghhBCirElBLIQQQgghypoUxKPgsDqAEEKIoiSfH0IUBxlDPAofbjqRN6e7SOIgbWT42pZXmOPz87EZs4lk0kTSaR7u7mJjeIDz6xvoSybpTSXpiMfZk4hbHV8IIcQEOrSqmrn+Cqb7KvBUTuHObet4/5KTOdsdxUWa7/RGbfvAnxDCJAXxKPxu53PcmXTjrz+CyqYzMSa9g63rf8n3m3dQ6XRR5XLRnojjAlJGhjl+P0s9AVpiMf7a1cFXG5uo83jpSMRpi5vbAi4XScMglslY/dcTQggxShVOJ4dXBVgaCNCbTPK3nn0cO/NQSEZoDe2ld+piYD0P7trA33GQSIQJVFdaHVsIcRBSEI+KQTq2j3DzU4SbV+BfcDYVb/k/9q66gUyo/XVHPrC36w3vvr1lF9O9Pqb7fNS4zC/5SbWTuWB6A33JFLtjUe7paCOWyeB2OAin0wX5WwkhhDi4CqeTKpebnmSCGxYuoTUWY0M4zObaw5i07L3c399MbMvfSfV2Qc+fAIjFpUdYiGIiBfGYGcS2/4tk96tkBjrA4QJj5AI2YRi0xGO0xGOvbXtkXzeP7utmhs/HXH8F0XSahZVVfGnOPLqTCbZGwjzS0y1DLoQQwiJHVFVz2uQ6jqgO8I/uLh7q7uKKLa/iqDuEqqO/QDrcRfS5W0n377I6qhBinKQgzlG6fzc4XNScdj2hVTdhJAbGfA4DaI/HaY+bRe8r4QEu2bSROf4KFldWYQD1Xi9fbZzPhoEgLw2E2BQOkzBkmIUQQkwEr8NJncdDRyKOmjKVDQMh7t7T+tqdO0fdIVQd83kiL/2WZMdai9MKIfJFCuLxMNKEVt6EkRwYVU/xaKSBXbEou2LR17b9qGUXRwYCvH1qPVM8vTzZu4/TJ9exLtRPbyo17msKIUS5q3S6OLtuKmdOmcpTffv4U+ceftCy67X9zuoGXJXTSHa9RP/jV0Fa7t4JUUpyKoi11icC5wAnAjOBCqAb2Aw8CdyvlOrNV0g7M5IDuKceSsWS8wmtuhEmoPd2/3CLf3bvBaDS6WRhZSUX1DewJxFHDwR5Vp5gFjmQtizKnQPzbt0XZjfSm0ryzR1b6Uom3nicy4/DN8l8IcWwECVnTAWx1voi4ArgcMx11zcAW4EoMAV4E/Ax4Mda6z8B1yulduY1sQ2lujfB4jT+BecS2/bQhF8vksnwi7YWXA4Hh1dVk/H58DocXDpnHs8H+1kd7JPZK8SIpC2LcudxODinbhon1E7i/7Zv4dbmnRzou6a38RRc1TOIvvInGSssRAkbdUGstV4P1AO/AT4OrFNKGQc4rhZ4J3Ah8LLW+pNKqT/mKa9NGYTX/ZKaU68nsWcNmXBHQa6aNgw2DIQIOCBlGDze28Mpk6bwoYaZ/L6jnRV9+wqSQxQXK9uy1voS4CJgKfCsUur0UbxnOvAq0KyUOno81xcCYFFlFZ+dOYfWeIzbm3dhYPYSD+VfcA6+prcRevaWQkcUQhTYWHqI7wLuUErFRjpIKdUP3Avcq7U+CmgYR76ikYnsJbrlfqqO/hShlTcU/vrAi6EgL4aCBFwu3A4nAZebK+fN5z+9PTzd1yu9xmI/K9vyHuAm4HjgpFG+50eYPdiT8nB9UcbqvV5CqRSxdJrf7GljY3j4oWb+Befgm6cIPf1tMjHpXBCi1I26IFZK/WCsJ1dKrQfWj/V9xSq+41F8jafhmXEcyT0vWJYjlE5jPp4Hv9nTxllTpvLeaQ3c2d7Ci6GgZbmEPVjZlpVS9wForRtHc7zW+t3AVOBu4Mvjvb4oT16Hk3dNq+eMyXX8uHU3r4YHXjcN5lC++W8zi+GVN0gxLESZkFkm8sogsvEeXFXTrQ7ymi2RMFsiYSa7PaQMg5k+H+fXN/CPvV2vm8lCCLvRWtcAtwJvZ/S9yQQCAZLJ5Ij77czO+eycDQ6cz+NwcM2M2eyMx7ips41+p2Pkv0dlA+5F7yC15ntUeZLgyc/febhrejyevJxfCDE+By2ItdZNwJ1AE3A/cPX+W61a69VKqRMmNmJxSXW/Sqr7VRy+Goy4fXpje1NmgRDPpNkcDvOlxnm0x+Pc3d5C9wjFgygdRdiWbwZ+o5TarLUedUEcCoWGLYgDgQAhG8/IYud8ds4Gb8w3y+dnSWUVj/f2cGN0G90HmDniDdx+CG3F8dhVGKn8dRiM9LWTglgIe3CO4pifAPcB78d8+vwxrfX+H3WlJR+As3IagRPseXc3YRg8uq+b/926idX9fYTTaRr9fhZXVlkdTUy8omnLWuuTgdOAG/N53vfMPYEvH3E6lxz6Zi6avxRcXhZXVvH2ummcOmkKywI1VDpdOPJ5UVFQFU4nH2mYyVXz5r+2bVTFsMNJzVuuMzsz8lgMCyGKw2iGTExXSv04++dPaK2/jvlBehYHfjC37GUiewmu+JbVMUaUNgyeys5CUeNy84mZs2mLx/lL554Rx9aJolZMbfksoBFo1lqDOT9ypda6AzheKdWSy0k3hnvxOXx4/bU46xYx6ZAvUtn+FLU9LzAzHaXa7aI9HqPe6eXqpoX0JBN0JxI8tq+HdQNB5vj8dCYSslqkjZ1dNw2fw8nV2zZnn6cYBacHMimCK66H9CiKZyFEyRlNQewb/EIpdaPWOgk8BhRkQFlRTtXk8hA44TJCz/0AMvYekrAxPMBV2zZz+uQ6PjlzNt/euW3YaYhEUbNDW3Zjft9xA06ttR/IKKWGViHfBe4Y9PqDwGcBBezN9frbure+7ta1w3sfr84+mY1RN6medpwVdWQSZpRLN7/MVI+HaR4f3ckEDuBTM+cwy++nN5nk6b59PNjdxRSPh/5UirQhLcYqTf4KPj59Jr9K7Ob+vZ1jfn/1sV8gufdl4rsem4B0QohiMJqCeIvW+iyl1KP7Nyilvqu1zmB+aBVC8U3VlE5gpJP45p1BfMcjlkQYi5RhoPd1o/d1A/C1ufPZGY3wQHcXcZmurVTYoS1fC3xj0Oso5op4p2utHwZWKKVuUEoNAAP7D9Ja9wMppVReJ/k2EiHiO/4FgGvyAvzzziT84s8BiGcytMXjtMX/uyrZ9Tu34gRm+Pz4nOaIsw9Pn8nS6gC7Y1HWD4R4qLsrnxHFCCqdTj7YMJOjq2t4MNhLaw53t/wL34HTP5l485MTkFAIUSxGUxB/6EAblVLf11oXZMGNYp2qKbr1QaqPvYT4jkcptv7Wn7c184HpM7hp4RJ+s6dNpmsrDXZoy8uB5cPsO3eE992N2Z4nTLp3O+He7Tj8k6k8/ENEXvotRmLgDcdlgLZBhdePW3fjdzpZWFHFVK85FPvChpk0eH28HB5gw0CQ9rgs9ZtPTqDW7SacTtOXTHLVtk24q6rG/F3WXbcE/4Jz6H/y/yCTmoioQogicdCCWCk17HdypVRbfuOMX65TNcHI0zXlNN1QqgtHKkRN08kY3RM7HXO+p0NKA78P9tEUi+Ly+aglQIPHS/toHk6Z4Gz5Zud8+ZyqqdjaslWMeJBMrI+aU/6P0DO3kIkcfIRGLJMxF3kIm6/v39vJoZXVHF5dzRdmz2X59i3Mq6jE53SyORKW4RXjcEhlFRfOmMXmcJh7Otr4W3aIxFhbscNdSdUxnyf84p0Ysd78BxVCFJVSnIc4p6maYPjpmsYz3ZB3y0P4ms4itPPpnN4/GhM5HdIGzPPO8vm4ZOYcVvb18reuDhKj/EAvtqma7ESmarKIkSb68u/JhLuoecu1hJ79Hulg85hOEU6neSHUzwuh/te2TfZ4eHvdNBp8PjYODPCr9hZZPXKMPjR9BsfVTOKPne08H+w/+BtGUHnURSQ71pHsKpu1o4QQIxh1Qay1/vh4LqSU+s143j8ag6ZqKvxDdMNI7HmBisM/jKumccwfqnbSFo9zzbYtfKRhJt9ZuITlO7YSHu0T3MJWiqEt20F812NkEiECJ/0vwVU3kgm1j+t8LwT7eSHYT63bzeFV1cQyGc6cUsfhVQFWB/tYJ8OSDsjrcHLGlCk82tPNk737+GtXB8k89LDHm58i1bMlDwmFEKVgLD3Ed4/jOgZQiA/RCZmqaVyMjLn8Z6S74JfOt1A6xc/ammn0VxBOp1laHWBHNMKAFMbF5u5xvLdQbdkWku2riTjdVC39JKGV38nLOftTKVb19wHwTF8fsXSGk2onc9GM2Vy/pwXD5SJlGGXfe+wETp40hffWT2dzOIzf6WRPYvxjsR3+yXhnHl8UDzsLIQpn1AWxUmo0i3hMCKunahqvTGQv3jknk+xYh5EMWxUjb5qzSz4vqqziUzPn8Os9rfLQXRGxsi0Xo0TrKhLtz4PTjcPpxUhF8nbuSCbNyv5eVvb34nc68VRVcXSgho82zGJTeIDng/08H+wb9RClUuEEFldW8ZZJk/lxy262R/P3NXfgwIjbc5iUEMI6xTKG2FZTNeXC4anG4aksiYJ4v792dfDSQIjPzprDJLeHJ3p7rI4kxMTIJPE1KRyeSmJbHpiQS8QyGTzA0329rAn2syxQy3E1tbwYCjLT52W238/aYJBIpnTvyBxRVc37ps/g8X09rOjbx427tuf1/O4pi0mHO0i0PZPX8wohil9eCmKtdS2wCOhQSrXm45yD2XmqptGK7/g3uHwHP7DIbImEuW77FlwOB1M9HqZ6vGyKlE7RX24mui0Xs/hOc9EGh7f6gNOx5VM0k2FVfy+r+s3ZD5wOB8sCNVzYMIutkTB3tbfQmyqdacK8DgdXNy3E63By/95Ong/25f0aDm811cdfSmj1D0jH5Y6WEOL1Rn3rVGt9ttb6pgNsvxroAp4Ddmutf5cd4iCGqHnLtbgmL7A6Rt7FMhnC6TST3R4unj2XD02fgcvhsDqWGIa05VyZ6zcGTrwC76wxTWAzbjuiEW5v2c3lW17h6b5eQuk0J9RM4oq58zlt8hSqXa6C5skHv9PJWyfXoaZMJWEY3LOnjWu2b2Z1sG9CZm2vPOJCEq3PkO7Nb6+zEKI0jGUs4cXA4sEbtNZnAd8GNmEugPEzzHG7l+UrYClJtD+Hb+7pVseYMFujEa7Zvpl6r4+vNjZZHUcMT9ryOITX/YrKIz+Ks6q+4NeOZTKsDvaRMgzWhYI82dvDEVUBbll0KDO8PqpcLhq89r8TdWHDTL6/+FAOq65md/aZhG3RyIQtX+SeehjuKUuIbPrrBF1BCFHsxtL7swz41pBtnwRiwNn7x+lmZ3f4CPC9fAQsJfHmFdS+9WYiG++F1NiXGC0G4XSa21p2Md3rBWChz8+LNp3nt4xJWx6HdLCZ6Oa/UX3c/xBc8U3LVjhLGJnsQ3f9eB0OEobBIZVVfG52I2nDYMNAiH9172VvDovp5Fu918sJNZNwOxzcv7eTzeEwD3V30VeIYR8OF1VLP25+303LioFCiAMbSw9xPTD0XtNZwNNDHlp7iCG9T8JkxPtJ9WzCO+N4q6NMuM5EgoDLxYenTOVTM2fjdcjEBjYibXmc4js1meg+Kpa8x+ooAK/NQrEpEuYrW17lh8276EkkMDBo9Pv5RtMiPjR9BscEaqh0TvzwCrfDwWS32d/y1cYmrm1ayGSPh40D5g/HL4T6C1MMA74mRTrSQ7JjTUGuJ4QoTmPpIQ4BVftfaK0XAXXAs0OOCwLFN6CtQOItK/E3vZVEywqro0y4UDrNzR1tnB+oZfn8Rdy0azvBdOk8CFTEpC3nQXj9XdSe/h0Se9aQ7ttpdZzXaY3HaI2bd6HcqRR/6GxncWUVZ0yuw+1wsibUz//MnktrPEZzLMruaJSuHHuS/U4nDiCeyfChhpk0+SuZ4/fzn94e/tC5h3s62tibSGDVrMqJtmdJ7nnBoqsLIYrFWAriTcB5mL1GZP9sAENnN28COscfrTQlO9dRddQncHiqMZIT+6S6HSQMg1+0tXB4VTWhdIpat5v+Eno6vkhJW84DI97PwPM/JBO295coZRhsjoTZPGj2F7fDwdN9vTT6/ZxUO5kGr48Hu7u4cu58Am43A+k0XYk4v2pvZVmghqXVATweL+nqWu7f20G1y81nZs1hiseLz+ng3o52nuzdR1ciwYuhILuiEaLZhUU6E9YN2fDNfxuJtufIRGVKSCHEyMZSEN8K3Ke1noL5IfkJ4CVg5ZDj3gvI4vDDySTpe/QrZTeW7eWwWfxfNmceO6JRft/ZTrrMFhuwEWnLeZLatxVn5TQ8M44l0Vw8d31ShsGaUD9rQv2v2/6j1t3UeTxUudyv3RroT6VoicXwYRCNxUgaBnuTCe5ub2VfKvm6H3D1PvutyGmU6PMaQoj8GvXATqXU/ZhPnx8PfBzz9ur7lVKvVTVa69nAGcA/85yz5PgXvcvqCJb47u4dTPF4+Pq8BUx2e6yOU5akLeeXkUnicJTG7HThdJrmWIxXwwNszP4QuyMa4fHeHp4eCPGf3n0MpNPEMhl2xqK2vtvjnrzIXJ65zDofhBC5GdN3caXUbcBtI+xvBSaNN1TJSyfAyIDDaf5eRiKZDLe37OKcuml4nDJXsVWkLeePEesjvvsJ3HVLSPVstjqOADwzjqNiyXsI/uc6mLDJ3IQQpUQe/beEQWzbQzjclVYHsYQBPNyzl65EgotmzOLtU6dZHUmI8XE4qVz6CTwzjrM6iXC4qDzsg0Re/gNSDAshRksKYos4qxuoOf1bQHn3kj64t4vjArVcMnsuPqf8dxRFysgQ2fBrKo+4sCSXaC8mvnlnkA53kdq70eooQogiMuohE1rrj4/nQkqp34zn/aUmM9AB6TiuyfPLeinRfakkN+7azkUzZnNizSSe7NtndaSSJ215YqR6NpHq2ULFoncQ3XSf1XHKksNdQcXi8wg98/+sjiKEKDJjGUN89ziuYwDyITpEon013pknEC3jghggaRjc2d4CwNLqAEnD4NVw6U9JZ6G7x/HecbVlrfUlwEXAUuBZpdTpwxxXjzkbxqmYY5l3AzcopX6X67ULIfrqn6g5/VvEdj2BEeu1Ok7Z8S96B8muDaSDLVZHEUIUmVEXxEopuZ+dZ4m21VSf+FWiL//e6ii2kTQMLp7VyIPdXbacwqkUWNyW9wA3Yc5wcdIIx1UD64CrgFbMGS8e0FrvVEo9M+Epc5SJ9hDf/R8qD3kf4XV3Wh2n7KRDe4jvfNzqGEKIIlQacwUVqXSoFdIJXJMXlPWwicFeDQ/wrZ3buKxxHpVOJw90d1kdSeSRUuo+AK1140GO2wHcMmjT41rr1ZhFtG0LYoDYlgfx1B9pdYzyUzWLROsq5EE6IUQupCC2WKJ9Nd6GZWU/bGKw7mSCb+3YRpXLSYXTic/ppM/G852Kiae1rgWWATcc7NhAIEAymRxx/4QLbcI/900Y+14Z81sLki9H9s3mwLXofAKJuyEZsjrMAQ33tfN4ZD52IexgLA/V/R1YrpR6cZTH+4EvAhGl1B055it50a3/gMzwH97lKmFkSKQynFBTy4cbZnJ7y252RCNWxyoJxdaWtdZu4LfAU0opfbDjQ6HQsAVxIBAgFCpAweRwUbVoGeG29TCGldIKli8Hds4GDgLrbrdtvpG+dlIQC2EPY+khbgae1VqvA+4FngY2KKVe67rTWs8ETgDeBZwPtAGfyl/cEpSO45lxHOmBdjKhdqvT2M7qYD9Jw+Dyxnn8oWMPK/vlQaU8KJq2nC2G7wGqgHcW+vo5M9KE194hU7AVgLOijuo3XY6xRmaWEELkbiwP1V2qtf4B5pKvy4FawNBaB4E4MBnwYE6suzp73G+VUuW1FFsOHA5XySz9OhFeDAW5cdd2mvzluZBJvhVLW84Ww78H6oB3KqWihbx+PgROvILolr/LnLgTyL/4PJKd63DL2GEhxDiMdenm7cClWuuvYj7c8iZgJuAHeoBNmLc1d+c7aClLtD8HTrltNpL2eJz2eJwllVWcN206P23dTSidtjpW0bKqLWeL3P2/nNnhGBmlVGLIcR7gD5jF8NuVUkU5Xia+U1N56AUEpSCeEM7KerwzjqP/sf+l2i8TIQkhcpdTt2T2w+vJ7C+RBzWnLie89mekg81WR7G1LZEwO6IRvjF/Mbe17KI5VnSdhrZiQVu+FvjGoNfR7LVP11o/DKxQSt0AvBlzqEYM6NL6taHD9yilLi5Q1nFLtK/Gv+Q8PNOPItm53uo4JadiyXuI73wUIxkGv10f+BNCFAO5T28Tyb0b8c44lqgUxCMygL90ddAci/K++gZubd5pdSQxBkqp5ZjDNA6079xBf36SkljX3CC66T4qDnmfFMR55qychqfhaPofvcLqKEKIEiD3mGwiuWcNnhnHWh2jaKwO9nNr806qXC7eObVe/iML20rueQFw4GmQ9p1P3hnHE9/1OEaqKEfTCCFspih6iEt9uVeA1L6tOP2TcVZOIxPZa3WconJoVTWHVlXzk9bdhGVcsbCh6Oa/4Z6yiGTHGqujlIzY9n+CQ34UFkLkR7F8N9m/3OutBzlu/3KvbwZqgC8BP9daj7RErE0YJDtexNNwjNVBiko4neZ7u3fQHItybdNCXI4SuMsuSk6yYy3RV/5odYyS4V98Hu5pR4AhkxgJIfKjKHqIy2G5V4DEnjX4F55LfMe/rY5SVDLAHzv38MS+HtKGwWyfn9b46BdDEKIQXLVzqVh8HgPP32Z1lKKXaH/efJBOCCHyJKeCWGu9ErgD+JNSKp7fSPkzluVeYeQlXwuyZGl0F2z6TU7Xsu+SqoXLFgWmVfi5fMZs1oQH+Ed/76hmJi3Gr12+VrcqlrZcCtLBViIb77U6RtHz1C8l1b8LIx60OooQooTk2kOcBH4N/EBr/Wvg50qpTfmLNX5jXe4Vhl/ytZBLljoDFThcU0n3jX72BDsvqVrobCFgeXgzX5g9l4unTOPHBxlXXKxfuzwu92r7tlwyjDRGKo6v6SziOx+1Ok1xcvupOuZigiuWS0EshMirnMYQZx9qOxTzg/TjwMta6/9orT+YnVDfUkOWe/2QxXHGxFU5DVfVdKtjFLVQOs0tu3fwQrCfWCaDR8YVD8vubbnUGOk4FYvfjSsw2+ooRcnfpEh2vUQm3GV1FCFEicn5oTql1Gal1FeAWcAnABfwO6B67X36AAAgAElEQVRVa32T1np+fiKOzaDlXuuBdxXbcq/JzvUk2p61OkbRM4DHe80xxVfNW8A7p9aXwqS2E8KubbkkZZLEtv8L/6J3WZ2k+Li8+OefTWzrg1YnEUKUoHHPMqGUiiulfgtcBqwApgFfA7Zorf+stW4Y7zW01u7sEq+vLfeqtfYe4DgP8MdshncW63KvlUd9SmabyKMftezmqOoavtLYRLXLZXUc2ypEWxYQ2/UYnvojcVZOszpKUfE1nkqqdzvpUKvVUYQQJWhcs0xorSuADwMXA8cCmzA/TP8MvAtzRap7gTPHlbLMlntNB1vwzjiWZMdaq6OUhN5Ukpt2beP8+hlM83gZSBfVTYOCKGBbFqkY8ean8M9/mzxkN2oO/AvOIbzmZ1YHEUKUqFxnmTgS+DxwIeY43b8DVyqlnhh02C+01h2YH6jjUm7LvSY71lKx5D3mpPMyz2ZepIE/d+0B4Pz6BpzA3/Z2WprJDgrdloUptuPf1J5xA9FNf5OV1kbD7SO+63FSvVutTiKEKFG59hCvB9qBH2A+lb5nmOO2UQTz/9pNJtpDJroP95RFpHo2Wx2n5Oiebj49aw7XNS3knt4e7DnHRMFIW7aAEeslsv7uEvjxvTAc7gpi2/5pdQwhRAnLtSB+P3C/UmrEdXKVUq8CZ+R4jbKW6FiLp+EYKYgnQDCd4tbmnZwxuY5jq6rZ1rvP6khWkrZskUT7c7gCs0mn4mDIkuPDcfgnEzjhMoJPLbc6ihCihOVUECul/prvIOL1knvWUH3Cl4i+/Huro5SsJ3p7CKQSNPr9XFA/g9/saaV7mIVZSpW0ZWv5F72L2NYHSIfarI5iW0asV4phIcSEy2mWCa31Dq31UcPsO0JrvWN8sUQ62Ez4xTutjlEW2mIxNkUGWD5/MWdNmVpWd7GlLVsrvPanUgyPwFlZT9UxX7A6hhCiDOQ67do8wDfMPj8wN8fzikHSwWaZwL8A0sA/u/fyrZ1bWVBRidfpLKeieB7Sli1VdczncU891OoYtuRfcDaZaLfVMYQQZWA88xAbw2w/Dugbx3lFlqtmDt7ZJ1kdo2x0JhLc0dZMPJPhq3Pn84HpM/A7xz1VdzGQtmyhVM8W/AvOPfiBZcbhqcI7+83EZJlrIUQBjHoMsdb6cuDy7EsDeFBrnRhyWAUwBfhDfuKVt1TPZnmoziK/aGvmgvoZ3LTwEH6zp5W1oaDVkfJG2rK9xFuepuKQ9+GsngnlPufJIL55byXZ8SJGTH4mE0JMvLE8VLcDeCz754uAF4C9Q46JA68AMvg1T3zzzsRIx0i0rLQ6SlnpT6X4ZXsL8ysq8TocuICmikq2RUtizlhpy3aSSRLf9Tj++WfBzvusTmMPDhf+JkXo2e9anUQIUSZGXRArpf6OOWk/2RXgvqWUkgduJlgmEcLXeJoUxBbZkS2Ap3u9XDy7kT3xOH/t6mBXrHhXu7OyLWutL8EswpcCzyqlTh/h2GrgDuDdmAX6L4GvK6WGG+JRtGK7HqP2rTeTbnkY6SUG76wTSYfaSAdbrI4ihCgTuU679sl8BxEHluzaQPXRnwG3H1Ixq+OUrc5Egiu3bea0SVP4cmMT39u9g9Z4bNjBt8XCgra8B7gJOB442AD524BpmA/2TQIexVxE5LaJDGgFI95PsnMd7oY3Qe+DVsexXKJ9NanuV62OIYQoI2MZQ5wGTlJKrdZaZxj+QRwAQymV66IfYrBUjOS+LXjrl5JoX211mrKWNgwe7+1hRd8+koaBmlLHsYFaHu7Zy4aB4unVs7ItK6Xuy2ZoPEjGSuAjwFuUUr1Ar9b6FuCLlGBBDBB56R6qK1xWx7Cca9J8HC4vqZ5NVkcRQpSRsXzQfRNoHfTnYu8cKxrJjrV4Go6Vgtgmkob5X/+JfT1E0mneP30GH5w+g+t3bCVhFEWzKIa2vBjwAusGbVsLHK61do20sl4gECA5wgIrgUAgbyHzzTF5CTW1KYy+rVZHOaBCfO0cgcng8mIkxn4tO//bDpfN4/EUOIkQ4kDGMob4+kF/Xj4RYcSBJTrWUnHo+8HhkiVebSQNrOrvY1V/H43+ChKGwfn1DTR4fTzT38vGgdBrxbOdFElbDgARpVRq0LY+wIU5A8bAcG8MhULDFsSBQIBQyL69+TWT0kTCIVI2zFiIr53DU4nRui6n73N2/rcdKZsUxELYQ64r1Tm11u4h287WWn9Va310fqKJ/YxYH5GXfgtOuZ1qV83Zh+z+1d3FpvAAZ9dN47uLDsXlcDDF7SHgsucIIhu35RBQOSTbJMyfQ4r3icaDMPq2kOrbhcNr357OiVR5xIX4ms6yOoYQogzluurA74Ff7X+htb4YeBi4BXhOa63ykE0MkmhdhcNTZXUMcRCRTIbHe3u4add2rty2ibRhcExNDTcvOoTvLFjMRxtmUeF04slO5WYDdm3LW4AEMHhZ6WXAKyMNlygF/vlvo+KwD1gdo+Acvlo8DceQaFlhdRQhRBnKtSA+EfjnoNf/izlfaS1wH3DNOHOJIZyBmVQv+5zVMcQYxDIZAPS+Hv5n00bubGthXzJBwjBYFqjhp4ceyXcWHcbljU3MD9Thr27grClTOW3mEk5qXMYk/+RCxCxoW9Zau7XWfszhWk6ttV9r7R16nFIqAvwO+LbWepLWeh5wBWUwL3K8+Sm8M47H4a22OkpB+ee/jUTrMxjJsNVRhBBlKNeCuB5oA9BaLwSagB8ppULAXcCR+Ykn9suE2gk9c7PVMcTBON04K+pweGsA8M45GZweHJOa6Dri06w45HNUn3ETW06+mevmX8rvZl3AE/1BgpUzqJx9EtO9Pg6ZVM+bJtUxpbIgBXGh2/K1mEMebgFOyf75kez1H9ZaXz3o2MuAHqAZc/GQ+4Db85zHdoxEiOSeF/DNPcPqKIXj8uGbezqxHf+yOokQokzlOrAxCNRl/3w60K2U2pB9nQb848wlDsA97XCcFXUkmp+yOkp5cbpx+mpxeKpIB5txTWrC4fSQ2reFyqWfwBWYhdNXg8NXi8Ptw4gHiW59kPhOjaumEUfHixjxIMk9L5CJ95OJ92PEghjJMJ37J3jo74HOjdwD0NEGFOyJ+YK25exDfMuH2XfukNch4KP5vH6xiO14hOoTv0Js2z/L4kFaX+MppHo2kwl3WR1FCFGmci2IVwFXaa1TwJd5/S3Xhfx3SieRT5kU/qazpCDOF6cHKqbiiBkYqSi+eW8lvvNRPA3H4F9wrlnk+mtxuHxmIRvpJvT0t3F4KnG4zLv8yY61JNqfe12RO3gWs+jLvwfASEZItPVY8bc8GGnLNpQONpMJ78U7ozymW3RPXkRs+8NWxxBClLFcC+KvAQ8BDwA7eH2PzweBZ8YXSxxIat9WnBVTcFbUkYnasriyJ6fb/GFi0btwVTfgrJqOq2o6Dk8lJIK4X7qX5J4XcFZOBRykgy1EN/2VTDyIEe9/w5jG1N6XX/tzsmsDRU7ask3FdvwL9+RFUAYFcXjtT62OIIQoc7ku3bwVWKy1rlNKDa3MLgM6xp1MvJGRIdm5Hk/DMcR3Pmp1GntyuHBPno+rdi7xnZqKJedjpOPEtj0EDifJni1kmleQDndixPoIBKpJZucH3d+bm4nsJRPZa+XfomCkLdtXcs8aknvWWB1jwlUfdymRV/9MJiz/1YQQ1hnX5KgH+ABFKfXSeM4pRpboWIO/SUlBPJjLi6d+Kd5ZJ+KpP5JMuIvk3o2Ag+iW+8EwZ3uIbfm7tTltTNqyPbnrDsE74zgiG++xOsqEiW7+G5lwp9UxhBBlzp6rBYhhJbs2Ur3s8+aKTsmI1XEs56qZQ+At15Du20mi7TkiG36NkRi0IpQNV4oTYrTS/buJlfDwKO/sN5PsWIc9Vw8XQpSTnAtirfVFwIeBRt74JLqhlFownmBDrnUJcBGwFHhWKXX6CMdWA3cA7wbiwC+BryulSuM7bjpO5NU/gcsHZVwQVxz6ftKhdhKtq+h//CqMWJ/VkYpWIduyGBsjFQW3H0/9kSS7SqvD3llZT+URH6WvDIaFCCHsL6eCWGt9HXA9sBFYh1l4TqQ9wE3A8cBJBzn2NmAaMBdzqddHgfbs9pIQ36nNB8XKjDMwk4pF5xHecBexHY9gJAYAQ4rhcbCgLYsxcnoqqVr2OfoevRwyKavj5I1/wTnEdz8BafkvJ4SwXq5V1aeBHyqlLs9nmOEope4D0Fo3jnSc1roS+AjwFqVUL9Crtb4F+CIlVBA73BXUnHED/Y9+hbK41ejyUrH4PHxzTye65QHIpDBSMatTlYqCtmUxdulQG+lgK95ZbyLRstLqOHnh8FTjnX0S/Y9fZXUUIYQAci+I64AH8xkkTxYDXsyerv3WAodrrV1KqRFnuA8EAiSTyWH32Ulm9TcJBP67tKvd8g02nmyOmiZch38CI7ib9PM34E0E8VZV5DFdcX7tPB5Pvi5h17YsBolt/xcVh15QMgWxr+mtJPeswYj3Wx1FCCGA3AviJ4GjgMfzmCUfAkBEKTX4vmIf4AIqgIGR3hwKhQ5YEAcCAUKh0AHeYR1nVQPuKYeRaFlpy3z7jSebd9aJVB7xUQbW30WyY2LGGRbr1y6PBbFd27IYJNm1gcojPoK77hBSPZusjjM+Tg/+prMIrbrJ6iRCCPGaXAviLwP3aa17MFe22jf0AKVUZjzBchQCKrXW7kFF8STMJWijFuSZOA6oPPQDJFpWWZ0k7xzuCnC4SPZsIvjk/5GJveG/l8gfu7Zl8ToGse3/wr/gHAaKvCB2uLxEtz5IOtRmdRQhhHhNrgXxluzvdw2z3xjHucdjC5DA7PHa36W4DHjlYMMlik1moAMjFcM1qQnSpbWIhG/uaRiZNPGdj5bDCGmr2bUtiyHirStxVkyxOsY4OcDlJb7jEauDCCHE6+T6QfdNCvg0l9bajZnVDTi11n4go5RKDD5OKRXRWv8O+LbW+sOYvcNXAD8qVNZCSrQ/j3fmCdDykNVR8sI1qQmHy0ts+7+sjlJOCtqWxTikE0Q3/RWHtzo7w0rxcVY3ULX044RW3Wx1FCGEeJ1cl25ent8YB3Ut8I1Br6OYYx9P11o/DKxQSt2Q3XcZ8FOgGbO3+E7g9gJmLZhE27NUn/hVMiVQELunLKb6hMsIv/gLq6OUFQvashgHh6eSmrdcS/8TV7+2AmMxyQzskWJYCGFL41mYYxlwHXAqZk/sCUqptVrrG4CnlFJ56+bLfmgvH2bfuUNeh4CP5uvadpYOtWKkYjhqmiC0weo4OXNPPYzq4y5hYM1PSe3daHWcslPItizGx0hG6H/86xRjp76rdi6+uWcQ2XC31VGEEOINnLm8SWv9FuAZ4BDgd0POkwEuHn80MRqxbQ+BM28zDhScu26JWQw/f7sUwxaQtlyEXB6qj7sUHC6rk4yJf+E7yIS7rI4hhBAHlFNBjLlq3L+Bw4GvDNm3FjhmPKHE6CVansbo23LwA23IVTOH6uO/xMCanxT/VFLFS9pysUkncHirzecHioSzajqeaYcT2y2z+wkh7CnXgvgY4KdKKYM33rvrxlw6WRSI68iLcU9ZZHWMMctEe8xieO/LVkcpZ9KWi1Bs+7/wLzzH6hij5l/4DuI7HwNZYVIIYVO5FsQxoHKYfTMAWX6ogNKv/pbUvq1Wxxg1h7uC6uO/hJFOSDFsPWnLRSjZuQ6HuwJ33SFWRzkoh38y3pnHE5Op1oQQNpZrQfw08GWt9eBBbPt7lz6NrHpVWKkw/gXngCPXf87CMlJRYjv+DZnUwQ8WE03aclEyiG37J/5F77Q6yEH5559FvPkpjGRxThUnhCgPuc4ycR2wElgP/AXzA/QirfX3gWOB4/MTT4yWd+abSA/sIdm53uooI6o88uPEW1eS6tlsdRRhKnhbzs4r/j3gY5g/lP8FuEQpFT/AsTMxp008DXBgFvCXKKVa852r2MRbnqZiyXtx1TSSDjZbHWdY0c1/x1FkDwAKIcpPTl2KSqn1mFM0dQLXYH5Q/U9292lKKal2CizesgLvnFOsjjEi/8J34J6ykHSw7GsZ27CoLV+NWeAeASzCfKDvxmGO/QngAZqAOUAYkMmqATIpgs/cbOslkL1zTsZVOQ0jFbE6ihBCjCjneYiVUmuBM7Orxk0B+pRS8l3PIonWZ6k47AM4PFUYybDVcd7AU38k/vlvo/+p5ZB+Q0egsJAFbfkzwFeUUu0AWuvlwB+01lcopYauNjEfuDk7vzha63uBn01gtqKSCbXjmX406YF2W05pZqSTGNLehRBFIOeCeD+lVAxoz0MWMQ5GKkKycwPe2ScR36mtjvM6zoo6qpZ9joHnb8eI9VodRwyjEG1Zaz0Js6f3xUGb12IuCDIH2D3kLd8HPqC1fghIYw6zGHFpxkAgQDKZHHG/nY01n6NmKoYzAc7oBCX6rzFlq5oBoU3gMqBAX3M7/9sOl83jKd555IUoJTkVxFrrHcB7s7dbh+47AnhAKTV/vOHE2CSaV1Bx6AX2KogdLqqPv5TYtodJ7SvO+ZJLmQVteX9VMHj2ir4h+wZbiflw3z7M8c3rgTNHukAoFBq2IA4EAoRCobHkLaic8oU0OD04nG6M1MQVxWPJ5vBUUXvylwk+9Q0ykb0TlmkwO//bjpRNCmIh7CHXaQnmAb5h9vmBuTmeV4xDcu9Gc/o157g7/vPH6SbRvprY9n9anUQc2DwK25b3VwW1g7ZNGrIPAK21E3gUcyW9asyCWQMP5zlT0atY/C4qDr3A6hiv8S88l0THmoIVw0IIMV7jmadr6CT++x3Hf3t8REEZRDbeg/lclPU89UvBU01smxTDNlewtqyU6gNagKMHbV6WvU7LkMOnYBbktymlItlxzbcDb9JaT81nrmIX26nxzj4JZ0Wd1VFweAP45r2V2Ob7rY4ihBCjNuquRK315cDl2ZcG8KDWOjHksArMD7E/5CeeGCuHp4qaU5fT/9jXGL7OKQxnRR0khh/LKaxhg7Z8J3CN1voZIAksB+4a+kCdUqpba70NuERrfX1286VAq1KqewJyFS0jHiS+6wn8i88jsv5XlmbxL3wHibbnyER7LM0hhBBjMZZ76zuAx7J/vgh4ARh6PywOvIL5gScsYCTD9P/nWiwthl0+PFMPIb77Cbw2fsiljFndlm8ApgIvY96l+jPmVGxore8AUEpdnD32POBWoA3z1sc64N0TkKnoxbY9RO2ZtxDb9hCZcKclGRz+yfjmnkr/E9dYcn0hhMjVqAtipdTfgb8DaK0BvqmU2jlBucQ4OBxO/Id9iOgr1nTUVx31CTAM2y8SUq6sbstKqRTwpeyvofsuHvL6FeDsAkUrakYyQmzHI1QsOZ/w2p9aksHpqyG66T6ZTUYIUXRyevpKKfXJfAcR+WOkYngblpHsWFvwmR28jafhqp1H8KnlBb2uyI205dIS2/Fvqo/+LDhcYKQLem2Hr5Z0qI10/9CZ84QQwv5yno5Aa30R8GGgEfNp9MEMpdSC8QQT42EQ26nxzz+bgQIWxK6aOVQe9gGCK78ji28UEWnLJSQVY+CF28Hth1RhC2L/vDNJR/aSaFlR0OsKIUQ+5DoP8XXA9cBGzDF9Uv3YTLxlBRVL3oOzuoHMQMfEX9Dtp/r4S4ls/B2ZkKzTUiykLZemwAmXE9l4D+ng0Ik7JoqD6Ob7CnQtIYTIv1x7iD8N/FApdflBjxTWSMXM8YSL3k34xZ9P+OV8jaeS7NlMonXlhF9L5JW05RIUeva7kCnQDC8uHzWn/B+hZ2/BiMmMm0KI4pTrPMR1wIP5DCLyL77jUTzTj8ZZOW1iL+T0EN/xCJH1d0/sdcREkLZcijJJvI2n4F9wzoRfqmLJe0gHW6UYFkIUtVwL4ieBo/IZROSfkYow8PwPySQmbjlTh7uSmtO+aa6OV+CHeEReSFsuUameLfgXvXtCfyB2BWbjazyVyMv3Ttg1hBCiEHIdMvFl4D6tdQ/wT2Df0AOGTrIvrJHq2Yx78iIyyTCZgTyP7XV6MFIRgiuuh0wqv+cWhSJtuURlwp3Etj1E1dGfJrTqpvxfwOGiatlnib76F4x4MP/nF0KIAsq1h3gLcARwF9CJudrU4F9DV70SFnJW1eP0T8rzSd0ETv46nmlHQiqW33OLQpK2XMJi2x/G4fbjm3tG3s9dseQ9ZOJB4rufyPu5hRCi0HLtIf4mBV4KTWvtBr4HfAyzkP8LcIlS6g1PxWutZwK3A6dhrm71dPbY1sIltg/zQTcHzoq6vC2nWrX0ExjxfpJ7N+blfMIyBW/LooCMDOEXf0Hg5KtJ9mzO610ih7uC8Lpf5O18QghhpVwX5lie3xijcjVmgXsEZs/VA8CNwFcOcOxPMIvmJiCNufzsL4BzC5LUhlyT51N9/KUEn7gaIxkZ17kqDjkfV20jwZU3ILVUcbOoLYsCSofaiLzyR9xTFpLIQ0Hs8E/C4akksvGePKQTQgh7GHVBrLWeP5YTK6V2jD3OiD4DfEUp1Z7Nsxz4g9b6igOMcZwP3KyUCmWPvRf4WZ7zFJV073aSe9ZQeeTHCa+9I+fz+JoU3lknEVzxLRkqUaRs0JZFgSWanwLAPXkhqd7tjOcHWXftPFzVDcRkvnEhRAkZSw/xNsb2XdQ1xizD0lpPAuYALw7avBbYv33oWqHfBz6gtX4Is4f4Y8BDB7tOIBAgmTzw3J2BQGDswQtoVPmaH8J93JW4D3kHmbanxnwNR808XIvfTWrt96n2GeAb3dekJL52Fhkum8fjGc9pLWvLwlq++W8j88ofcxs65XDimb6MZOeLJDvzn00IIaw0loL4kxOW4uD2VwX9g7b1Ddk32ErMBQf2YX7wrwfOPNhFQqHQAQviQCBAKDRxU5eN11jyOZ/5HjWnXEdsXzPJrpdGfQ1nVT2Ztpdw7L0WIzH6J8pL6WtXaCNlG2dBbGVbFhYKr/kJ4MA7+80kWleN/o1OD67DP4UvbZDsXIcMlRJClJpRF8RKqV9PZJCD2F8V1ALd2T9PGrIPAK21E3gU+BNwdnbzcuBh4MQJTVkEMpEuBlbfRvUJX6L/P9dixPsP+h5n1XQqj/wYA89+d0zFsLAni9uysJjD7cffpPDULyW8/i5Ij7xat8NXS+CEyyAZZOCFHyHFsBCiFOU67VpBKaX6gBbg6EGbl2H2ErcMOXwKMBe4TSkVUUpFMGeceJPWemoh8tpdqncr/Y9fhRHvx1N/JLh8BzjKgXfmCVQseS+ZcCcDz3634DmFEPlnpKIEV90EmRS1Z3wHz/SjD3ygw4Vv7hnUnnEDic71pF/+pcw3LoQoWblOu2aFO4FrtNbPYM4ysRy4a+gDdUqpbq31NuASrfX12c2XAq1KqW4EAEYyDIBnxnGk+nbirJqOe8oiMDK4ArPwNCzDSISIvPwHi5MKIfIunSC87k4804+m4tD3U3n4h4huvp9E27P45p5OvGUlvtlvxjvzeELP/D/S/bvx2HisvRBCjFcxFcQ3AFOBlzF7tv+MORUbWus7AJRSF2ePPQ+4FWjDnId4HfDuAuctCpH1dwHgCMzGVdsIOMxhFc/fTrp/l6XZhBATK9m5jmTnetyTF2BkzOcnnBVTcTg9xJufJN78pMUJhRCiMIqmIFZKpYAvZX8N3XfxkNev8N/xw2IUUj2bSPVssjqGEKLgDFK92157Fd30FwuzCCGENYpiDLEQQgghhBATpWh6iIUQpWEsy7Bnj38XcD2wGHNWme8rpW4pUFwhhBBlQHqIhRCFNngZ9kXA4ZjLsL+B1voc4A7gfzGnWlyCOYWiEEIIkTfSQzzIcIsdeDye8S6EMKHsnM/O2cDe+UbKZtfMozSWZdi/BXxbKfVY9nUQ2DjSyUf62tj53xvsnc/O2cDe+Uq4LQtRMqQgNtUAXHjhhVbnEGKsanj9Co62NpZl2LXWVcCxmMXyK0AdsAq4TCnVfIDTSzsWxayo2rIQpUYKYlMr0IjZ+yREsajB/L9bTMayDPtkzGkTLwLeDnRhTqf4V+D4A5xb2rEoVsXYloUoKVIQA1deeaXBG1e8E8LuirE3adTLsA96fZtSaheA1voaYK/Weub+IRf7STsWRawY27IQJUUeqhNCFMxYlmFXSvVjDqEwBm0e/GchhBAiL6SHWAhRaKNahj3rDuAyrfUjwF7Mh+xeGNo7LIQQQoyHFMRCiEIbyzLs/w9zLPHa7LFPA+8rcF4hhBAlzmEYcgdSCCGEEEKULxlDLIQQQgghypoMmTgIrfUXMVfJmoF5i/fLSqkV1qYCrfWtwKWYixR4gXnAl5RSd1qZC+ybTWu9CqgCXMCflFLftDKPKCxpy2Nn12zSloUQ+SY9xCPQWn8Q+CHmmMdlmIsCPKy1brQ0GKCUuhzoU0odjTlH6ytWf0jtZ+Ns5yiljgKOAs7VWh99sDeI0iBtOTc2ziZtWQiRV9JDPLKvAHcrpX6RfX2p1voc4AvA162LJXKhlNq/YIM3+8tWPWDZJYy/Mczu3UqpeYVLU3KkLZcQactCiHyTHuJhaK29mMvGPjJk1yPAmwufSOSD1vo5zBXPtFJqnc16wL4L3AU8g3lbfwbwTcwVrA60MpsYBWnLpUnashAin6QgHt5UzPFpnUO2dwINhY8zohTZXhIbslU2pdSbgFnA0VrrI6zOM5hSagCIAAmlVIdSqgNztba0UmqvtemKmrTl/LBVNmnLQoh8koL44IbOS+c4wDardQCVWutvWx3kAGyXLXu79XHgHKuziIKStjw+tssmbVkIkS8yhnh43UCaN/Yg1fPGniZLKKWmZn9PAQstjvM6dsumtZ4EuJVS3VprP/A24NYhh9mqB0zkjbTlcbBbNmnLQoiJID3Ew1BKJYA1wFlDdp2F+YS6KC5TgH9rrTcALwBPKqX+MeQY2/WAYb8ezKIjbbnkSFsWQuSd9BCP7PvAb7XWq4GVwMXATOAOS+rl+PYAACAASURBVFMBWusRv7kqpRyFyjKUHbMppXZgPlh1oH226gEbIgTUZcdIvqKUylgdqEhJW86BHbNJWxZCTAQpiEeglPqj1roOuBbzKeGNwNuVUrutTfbfDyKttRN4DnMqnwusTfWaRuC3mLekk8D1Sqn7rI1UtB4F9gEvAdMwb/+LMZK2nDNpy/kjbVkIG3MYhtzFKWZa60uAUzDH1NniQ1RrPQOYrpRap7Wux7xdvUSp/8/enYdHWZ2NH//Olpksk5UkEEIgLCLKKqgg7n3cXqtV64oiuJSi1VZrX6VarbRal75urVTszypVcatVbEWwPYooAi6RfScsIfs6yUySyay/PybBELKRzJbk/lxXLjLPc+Y8dzKczD3nOYvWEMGYevQfPZK9c2Jgkbbc7ZikLQshgk4S4j6s+Q3qTeBR4PZoeRNtq3ms3w81TSuIdCytRWmPnBiApC33jrRlIURvyaS6vu2PwINA1I5FU0pNA0zAoUjH0o7bgPxIByEE0pZ7S9qyEKJXJCHuo5RSZwJ+TdOidpZ885jNV4FbNE2LqlsRzT1yVwB/jXQsYmCTttw70paFEMEgCXHfdRpwnlLqAPAWcJFS6m+RDel7Sikz8D7wWJS+0Ud9j5wYMKQt9460ZSFEr0lC3Edpmva4pmlDNU0bAVwLrNA07ZYIhwWAUkoHLAE+1TTttQiHc5S+0CMnBg5pyz0nbVkIESySEItQmAlcA1ymlNrY/DUh0kG1EtU9ckJEEWnLQogBQVaZEAOaUups4A6ZmS5E3yZtWQjRG9JDLIQQQgghBjTpIRZCCCGEEAOa9BALIYQQQogBTRJiIYQQQggxoElCLIQQQgghBjRJiIUQQgghxIAmCbEQQgghhBjQJCEWQgghhBADmiTEQgghhBBiQDNGOgDRPymlzgV+CUwHrEAhsBz4g6ZppZGMTQghhBCiNdmYQwSdUup/gSeBj4H/B1QCk4AFBO5KaJqmbY1chEKI7uisLWualhXJ2IQQIpgkIRZBpZQ6C1gFvKlp2vVtzmUDGwm8qY7XNM0TgRCFEN3QVVvWNK0wMpEJIUTwyRhiEWz3AU3AL9qeaH4D/Q0wFrg8zHEJIY5NV21ZCCH6DekhFkGjlDICdcBO4JQOig0D9gF/1TTtp+GKTQjRfd1py3KHRwjRn8ikOhFMaUAsMAVwd1F2WOjDEUL0UHfasi584QghRGhJQiyCqeUNchVwbwdl4oHPwhKNEKKnutOWhRCi35CEWARTJdAIJGqa9m17BZRSE5q/PRS2qIQQx6rLtiyEEP2JTKoTQdM8pnA1MEEpldNBsR82//tJeKISQhyrbrZlIYToNyQhFsH2JGACnmh7QimVBdwD7AHeD3NcQohj01VbFkKIfkNWmRBBp5T6NfAHYCXwElABTCCwMYeZwMYcmyMXoRCiOzpry5qmycRYIUS/IQmxCAml1HnA3cCpQAJQzPdbNxdHMjYhRPd11JY1TbsjooEJIUQQSUIshBBCCCEGNBlDLIQQQgghBjRJiIUQQgghxIAmCbEQQgghhBjQJCEWQgghhBADmiTEQgghhBBiQJOEWAghhBBCDGiSEAshhBBCiAFNEmIhhBBCCDGgSUIshBBCCCEGNEmIhRBCCCHEgCYJsRBCCCGEGNAkIRZCCCGEEAOaJMRCCCGEEGJAk4RY9JhSyq+UuqHV4wNKqd+0evyZUuqlyEQnhGitbXsN8bXmKqU84biWEEIEgzHSAYg+bQhg6+T8FYC8KQoRZkopBRRqmja31eEj2mtzwnqrpmlLQhDC28CKENQrhBAhIQmx6DFN00q7OF8drliEEJ3rqr0G+VqNQGO4rieEEL0lCbHolFLqdOAJYGLzoX3AvZqmfayU8gOzNU17vYPnfgbs1TTt1lbHfgb8DBgF1AKfa5p2ZfO5WcAvgOMBN/AVcLemabtD8bMJ0R8ppZYAP2j+fk7z4XOAVTS3V6XUAcAAvKKUegVA0zSdUioF+DNwJpAOFAB/BZ7WNM3fqv5s4B3gASClue5bNU2raC4zF3hJ0zRj8+Mu6xVCiEiSMcSiQ0opA/AvAonpSc1fDwMNPaxvIYHk+i/ABOBCYGOrImbg983XOQ/wAsuVUjE9+wmEGJB+AXxBIGEd0vy1tk2Zkwm0r7talYFAG9wCXAacQKA9LgTmtvP8c4CLCbTjycD/dRJTd+sVQoiIkB5i0ZlEAr0//9I0bU/zsT2dlO+QUioeuBd4UNO051ud+q7lG03TXmnznLlAFYE33y97cl0hBhpN02qVUi6gsfUwicCw4sNlKpof17Yu0/z9E62q26+UOhmYBbRuny5grqZpTc11v0AgEe8opu7WK4QQESEJseiQpmk1zatEfKyU+hRYDbyvadquHlR3ImAB/tNRAaXUZOC3BHqbBgG65lPDkYRYiJBTSukJfHC9lsCwCAtgAg62KbqjJRluVgRkBqFeIYSICBkyITqladpPgKnAf4GzgK1KqZ/2osp2xwsqpeIIJMt+4GbgFAI9w35AhkwIER73AL8mMN73PAIfTl/i6DboavPYz/cfYHtTrxBCRIT0EIsuaZq2FdgKPK2UWgzMA148xmq2A07gAgJjCdsaR2CyzQOapu0AUEqdRudvskKI9rkITJo71jJnAis1TftbywGl1JggxBOqeoUQIigkIRYdUkqNBn4C/Bs4BGQBZ9Bq3G93aZrmUEo9BTyslGok0OMcC/yPpmmPEbh12gTc2VxuBPA4HfQoCyE6tR84RynVsppLbSdlVgAuTdMqgV3AbKXUOQSGQdwInArU9DKeUNUrhBBBIUMmRGfqgTHAW8Bu4J8EZqvf0cP6HiSwTNPPCfQ4/4fAihI0vxnfQOB26jYCM9Z/Bfh6Hr4QA9ZTQCWwCagAZrZT5h4Cw6H2N5eBwOoPq4EPgHUEJtX+KQjxhKpeIYQICp3fLx1wQgghhBBi4JIeYiGEEEIIMaBJQiyEEEIIIQY0SYiFEEIIIcSAJqtMAE888YSOwGLxdZGORYhjkAgU3nfffTIRAGnHok/rVlvOy8szANbwhCREv1I/depUd2cFJCEOyAYKIh2EED2QQ2BJPCHtWPRtnbblBx54YPLatWufttlsKWGMSYh+IS4urmHo0KHrL7nkkvtnz57d1F4ZSYgD6gCWLl2K2330Bwir1Yrdbg97UN0VzfFFc2wQ3fF1FpvJZOL6668H6Q1trdN2DNH9ekN0xxfNsUF0xxeMtrxhw4Z7Dh06lAh4gx+hEP2b3W43l5WVnQX8Yfbs2fe0V0YS4lbcbne7b6QdHY8W0RxfNMcG0R1fNMcWzTr7vUX77zSa44vm2CC64+ttbHl5eeaamprjghiSEANScXHx9Ly8PFN7wydkUp0QQggR3WKdTmdMpIMQoq+rr6+PA+LbOycJsRBCCCGEGNBkyEQ3jE4dSWJaDA2uespqiymst8l+wkL0QeMzxuFLg4ONDZTXFuNzVkc6JCGEEFFAeoi7Ic1i5URrEmdlZHP7mCmkn/lbJo69iDnZo5hiTcSo00U6RCFENwyzxHO6NY770+N4+PgpJF+4iIRpd2LKmBDp0IQQx2jevHkjZs+ePQwgMzMzZvHixVPj4+MN3XnuggULxl588cUZoYhr8eLFU0eOHBnb0+dffvnlg2+//fbcYMbU4p577hlzwQUXpIei7r5Oeoi74aviTajDM4R1GFMLMQ2ZTJU1lwuNcOvQHB7bv5fCJmdE4xRCdG5FwbeHZ/snGY3U7fyOn+WMJN/iY6VOT+yE2TRsXQo+T4QjFaLvWbBgwdjs7Ox4n8/n93q9/rKyssZ333330N69exsiHduxyMzMjFm4cOEEl8vlA3A6nd4dO3bYli5desjlcoV83ff333+/NBj1LFiwYOyWLVtqli9fXt5y7KmnntoTjLr7I0mIj5kfT/UeCqv3UAh8aLSQc9r/UrL7MWYmpXBacgrLykvZ09in2r8QA06txwOeGv55YCtzs7KZNHwkL1fvpMHnwZR1Cj57MV57YaTDFKJPWbFiReHy5cvLTSaT7tprr82eN2/e6HvvvXfzsdaj1+vx+SI7OPHXv/715vr6em9mZmbMHXfcMebyyy/Pevvtt4tCec1o+LkHKkmIe8vjpOCLR8HvY8vwSzFWrmd+9nAOOBt4sbAAl182ERMimpW4mnj8QD6XpmeS21RJOaA3xhI/89e4CtfSuPM9/J7GSIcpRJ/idrv9n3/+ecXMmTMzrFarwWKxGObMmTN8yJAhcXq9XldUVFT/xhtvFBQXFzdBYPiD3+/3m81mw+jRoxM//fTTknXr1tV09pyuXHjhhenN1zeVl5c3vvXWWwX79u075sZcVlbm2rlzZ21WVlYsgMVi0c+aNWvYuHHjknQ6nW737t21S5cuPVRfX3/UGtEjR46Mveaaa3LS09NjAfbv31/32muvFdhsNg8EenELCgrqs7KyYnNychLeeuutA1lZWbFDhw6Nfe655/J/+MMfZp5//vlZLfXp9Xqdw+FwL1iwYEtndd9www3ZOTk5CdnZ2fEXXHDB0KKiovonnnhid9te48mTJydeeumlQ1NTU821tbWuDz/8sOibb76pBbjyyiuzhg0bFldVVdU0ZcqUNLfb7fv444+LP/nkk8pj/R32BZIQB4M/8GmusWIbmybeSd7OdxlftxGX30+OJZYiZ6OspC5EFPMDH1SUATAzKYWSim/Y/+kG4k64msRzH6P+u7/iqdwe2SCF6EPMZrP+7LPPTrfZbC673e6Ni4szrFq1qnzz5s11BoNBN2fOnJybb74595FHHtnZ8pyJEyemLVmyJH/RokX7TCaTLiUlxdTVczpy/vnnp5922mkZixcv3ltSUtJ0zjnnDLrtttvGPPjgg1udTucxdcEOGTLEPG7cuORNmzZVA8yePTsnLS3N/Mgjj2z3er3+efPm5d50003Dn3/++X1tn+v3+/nggw+Kdu/eXR8XF2eYN29e7vXXX5+zaNGiw2WnTp2a9te//nXvrl276mNiYnSXXnrp4fHHH374YdmHH35YBoFE/L777jt++/bttq7qfv311wuzs7Pj2w6ZaPtz3XLLLaPffPPN/evXr6+ZMmVK0ty5c0dVVFTsOHDgQCPA6NGjE7/99tsDr7/++qFp06Yl33jjjSPz8vJsLQl9fyIJcRC5S76lru4Q1lN/yeaKYbDldX44KIPBMWb+WlQgY4yF6AMcXg935Yzgjwf2cWjjSxjTx5Nw0k9pKlpP47Y3Ix2eEIfFnTgryzL6oiFtj/ua6ty2lT/bHHfirCyAhm1vFCdfuGii3pxoalvWuXdFScv5utW/3WFMHROXMO320W3PdzemCy+8MPu8887L8ng8/pKSkoYXX3xxLwR6WcvKylwQ6D1etmxZ8cKFCydYLBZ9S4K6d+/e2ry8vFoAl8vl785zOnL66adnLF++vKioqKgJ4JNPPqk8++yzMydMmGBt6QHtyqOPPjrB7/fjdDq927dvty1btqxEp9MxadKk1Oeff35XbW2tB+Ddd98tvP/++09sL679+/cf7pGuq6vzrFy5svSmm24a2brMxo0bq3ft2lXf8nO3F4tOp2P+/PkjKysrnf/4xz+Ku1t3Z6ZPn55y8OBB+9q1a2sA8vLyamfMmGE77bTT0g4cOFAIUFJS0vDFF19UA3z99de2a665xpuTkxNrs9mic1vIXghLQqyUmg5cCEwHsoBYoBLYBawGlmmaVhOOWELNV19G3ecLSTjlF8RPvY2/fPciZyQlct+IUbxUVMAmR7/7PyQGkIHQljc57LxeUsQ9w0fyu317qK7YSu2qBzANnhIooDfKpDsRFRq2vVHcWbLa+pxt5c86Hcfbct5VVFlbXbQur6cxrVy5srC9HsnExETjrFmzhuXm5lotFovB7w+MJ0xMTDQ6nU4XQE1NjetYn9OR5OTkmFmzZuVed911hxNMg8GgS0lJ6fYGJw888MCWtsMgkpOTjUajUVdaWnp42EZJSUkTQFpamqklAW8xZMgQ89VXX52dnZ0dHxMTY4BA73nrMtXV1V0OAbnhhhuGxcfHG5988sldx1J3Z5KTk2OqqqqOuHZVVVVT69+R3W4/Ykc3t9vti42N7dZKHn1NSBNipdQc4FfAiQT2ad8M7AEagVTgVGA2sEgp9Q6wUNO0/aGMKRz8ngbs6/+PhGk/w5A8gi9q8slvbKDR6yVOr8ft9+OWscWiDxlobfnrulr8QFPzcCi/24Hr0BfoLMlYT72HutUPERhoIYTojquvvnqoxWLRP/bYY9ttNpunZSUHXatlS/1t3he785yO1NbWut5///1D3333XV0wf47a2lqPx+PxZ2ZmmluGDQwePNgMUFVVddR2wDfccENOVVVV08KFC7c5HA7v+PHjrXfccccxbcN9/vnnp59wwgnJTzzxxA632334l9RV3f62v9A2bDaba+TIkdbWx1JTU81tP5gMFCFLiJVSm4AM4FXgRmCjpmlHvThKqSTgh8D1wDal1E2apr0dqrjCxufG8fWzAJgyJ1Fcthnwc8mgDCZZE3muYD92r4wsFtFvoLblb+pqSTQYuWRQBv+uDHR4+Z027GsfA8CYOgZPtaxgJER3mM1mg8vl8jkcDm9CQoLhiiuuGBqK57RYs2ZN+Q9/+MOhFRUVrkOHDjktFov+hBNOSMjPz29oGerQE36/n82bN1dfdtllQ1944YV9Xq/Xf+WVV2Zv3bq1pr1hHGaz2eB0On319fXe1NRU00UXHT3EpTOTJ09OvPDCC7OeffbZXW3H7XZVt91ud6enp1s6qnv9+vU1P/jBD7JmzJiR/NVXX9kmT56cePzxxyc/9dRTO44lxv4ilD3ErwCLNU3rdOCspmm1wFJgqVJqEjA4hDGFn06PafBUPDX78LvsfFhZToxez0Mjx/D0wf2UuLo1WVaISIp4W1ZKxQJbgEGapiUHq96uOH1epiclU+1282VtYCSI392AzpJC/LSf0ZS/Emf+ynCFI0Sf9cEHHxTPnTt3xNNPPz3Zbre7//vf/5ZMmjQpNdjPafHxxx9X+Hw+/09+8pNRSUlJMS6Xy1tQUFCfn59/sLc/y+uvv14wa9asYQ8++OAJOp1Ot2fPntqlS5ceaq/su+++e+i6664b/txzz02pqalpWrt2bcWoUaOs7ZVtzymnnJJqNpsNv/rVr8a1HLPZbK6HHnpoW1d1K6XKZ8+ePeLZZ5+dXFRUVP/HP/7xiE/wJSUlTS+//PLeSy65JPvaa6/NtdlsTa+//vq+lgl1A42uix71AeGJJ55IAmxLlizB7T7qjgdWq/XwYv49ZjATM3gKrqL1AJyRnILPz+E32d4ISnwhEs2xQXTH11lsJpOJuXPnAiTfd9993Zog0pcppf4InAxM7igh7qodQ89e72FmC/eOGMXCfXuodH9/J1Efm4Z1xv/iKt1I4/a3CcYQir76/zEaRHN8vW3LeXl5ybfeeusqu90utxWF6AWr1Wp46aWXzpk6daqt7TnZujlMdEYLsSdcg2nINAC+sNXwZW0NM5KSGRMXH+HohIheSqmTgP8BHovE9Q81OXmvvJTBMeYjjvsaq6j74hFMaccRN3EOIFu4CyFEXxX0hFgplauU+kQptU8p9bRSytLq3NfBvl5f4W+qxfHNn4ifdBMGa/bh43aPh58PG8EJ8QkRjE6Io0VDW1ZKGYH/B/wMiNj4olU1VWytt5MZc+QEdb/bQd26JzEkZhM36aYIRSeEEKK3QjGG+C/Ae8B64E7gE6XUhZqm2YGj1kAcSLy2/TRseZ2EU++mbvVv8bsdbK138PyhA9wxbATPFexnr2z5LKJHNLTle4DNmqZ9ppQ6uztPsFqtHQ6ZaDnfE4OMRu7JHMofSgqx+9rcud66GGPa+B7XHYz4wiGaY4Pojq+j2EymAf22KETUCEVCnKlp2qLm7+cqpX5N4I30PGSdIlxF6zAkjyD+pHk4vnoagF0N9TxbsJ9SmWAnoktE27JSahSBnuEpx/I8u90e1DHEh+sFPjOZ+ZE1kRcKC44+a/sM46BxmDIn93gDj746DjYaRHN8XY0hFkJEXijGEB8x0E7TtMeAd4BPgOj9+B5GjdvfQac3ok/4fhJ+fmMDDV4vd+fkMtTc4SopQoRTpNvyGUA6gSXcSgn0VicqpUqVUqeF4fpH+VdFGaNi4xgZG9fueU/NPpoKViPjiYUQom8JRUK8u7kH6TBN0/4PeAMYFYLr9T1+L/Z1T+JzlKKLSfz+MLCutoZfDc9lkKnbm+kIESqRbstvA7nA5OavWwl01E4Gvg3D9Y/i8vt5dH8++zoa2uRtwmcvxnLcpcQef0V4gxNCCNFjoUiIrwU+b3tQ07SngWEhuF6fZUw9jviJc444tr7WxvLKCn6Zk0u/3BtR9CURbcuapjVqmlba8gVUA/7mxxHbSanG42ZSgpVp1qQOyzQdWEVM1qlYRl0UxsiEEEL0VNDHEGua1uFAWE3TioJ9vb7MU70bR81e0BnA//0kHVVdye4GB7LgpIikaGvLmqZ9BoRtU47O1Hu93D4sm82OOlztrOXud9VRt/ZxEk9/EL+nkaaDn4U/SCGEEN0m6xBHmt+H9bT7MKaPP+JwgdPJpAQrN2dld/BEIUSk7G1sIL+hgfPT0jss43fWYF/3OLFjL8c05OQwRieE6KkFCxaMvfjiizMATjjhhIQnn3xyYjDqnTdv3ojZs2dHzV3yxx9/fMKpp57a4w6GM888M/WBBx44Ppgxtbj55ptzrrvuum5v0x0sIdu6WSl1Y2+er2naq8GKJdo5d/+b+Mm3ULfqfvye73dM3FFfzxUZg7l0UAb/qiyPYIRiIJO23L5/lpdyeUZmp2V89eXY1z+Fdca91NXk43NWhyk6IcJvwYIFY7Ozs+N9Pp/f6/X6y8rKGt99991De/fu7ZPriW7fvt1x7733bo50HB1ZvHjxVLfb7fP7/bhcLt++ffvqli5deqi2ttYT6mt//vnn1Z9//nmv/6DNmzdvRGNjo/e11147vPX1yy+/3HYZn7AIWUIMLOnFc/1Av3wTbY+7Ygvu8s3Ejb+e+o0vHT7u8vt4pmA/vx05hn2NDWytd0QwSjGALenFc/ttWy51NfFCYQE6Ol+DzltXQO1n9+NvqgO9CXwdr5EsRF+3YsWKwuXLl5ebTCbdtddemz1v3rzRPUkq9Xo9Pp8vFCH2OZ39Lp555pmd+/bta0xOTjbOnz9/1KxZs4a98MIL+yMVT18WsoRY07SIDcdQSpmB54EfABlACbBI07RnIxVTVxq2vUnS2X/AlD4Bd8WWw8dtHg//d3A/Ve6IzSESA1wk23K0s+j1PDxyDL/bt4eGTt4g/E116GPTSDj559R9/jCyJLvo79xut//zzz+vmDlzZobVajXY7XbvhAkTrD/60Y+GpqWlWRwOh/vjjz8uXrNmTQ3AlVdemTVs2LC42tpa1/jx41M2b95c8+2339bceuutoz766KMiTdOGGAwGXV5eXtVbb71V2JKQ5ebmxl511VXDBg8eHOd0Oj1r1qwp/+ijj8oBzjnnnLSzzjorc9OmTdUzZ87M1Ol0fPnll+XvvfdeSUuc559/fvq555472Gw2G/Ly8ipb/wzjx4+33nrrraPuuuuujQBGo1F3+eWXD5kyZUpqfHy8yWazNb366qsH8vPzGxYsWDB2y5YtNcuXLy8HyMzMjFm4cOGEe+65Z2N9ff1RU4Lmz5+fO3LkSKvZbDbU1NQ0/etf/yr87rvv6lrHvW3bNtspp5wyqLi4uOGZZ57Z29nv22azeTZu3Fg9Y8aMdACDwaC76qqrsiZPnpwaExOjP3jwoOP1118vqKqqOuoTeXp6esycOXOGDxkyJE6v1+uKiorq33jjjYLi4uImCPTi+v1+v9lsNowePTrx008/LbHb7Z6zzjor8+GHH94+Y8aM5Ouuuy63pT6dTqczmUy6+fPn53VW90UXXZQxadKkVICTTz55kMPhcN9///1b2/Yajx49Ou7qq68elpGREetwODyrVq0q/eSTTyq7+xp3Vyh7iCPJCJQC5wP7gInAx0qpEk3T3o5oZB3xOGnYvIS4SXOoXXU/eL9PgIuanFj0em7PHs7LxYdw9sNPZkL0RU6fj73NY4mXVZR1WtbXWEXd2scCD4wW8DjDEKEQkWE2m/Vnn312us1mc9ntdu/w4cMtN99886glS5bkb9682T569Oi422+//biysrKmPXv2NACMGTMm6Z///OfBJUuWFBiNRt1xxx2XEBMTYxgxYkT8Qw89tDUlJcV05513jrnwwgtdH330UXlycrLxzjvvHPv+++8XfPnll9VDhgwx33HHHcfV1NS41q1bZwNIT0+3+Hw+7rvvvs25ubmxd9999/EbN2607du3r3H8+PEJ//M//zN08eLFe/bs2dNw6aWXZg4bNix+y5YtNe39TNddd112bm5uwvPPP7+nuLi4aejQoWa3292jT7e7d++ue+211woaGxu9mqalz5kzZ1R+fv6WluEOGRkZsVu3brXdf//9W3S6rtc1T01NNZ100kmpxcXFDQCXXXbZ4BNOOCH5mWee2WWz2TyzZ88edtttt4165JFHdrZ9rl6vZ9WqVeWbN2+uMxgMujlz5uTcfPPNua3LTpw4MW3JkiX5ixYt2mcymXQzZ85MbTm3bt0627p16za01HX33XePqa+v93RV94oVK8qHDRsW13bIRGvx8fGG22+/fcwnn3xSsnLlyt2jR4+Omz9//hibzebOy8urhc5f42N5TSKSECulkoAxQKmmaYXBrl/TtHrgwVaHNiqllgMzCaxtGpXc5ZtpKvgcnSkev/fIHmGnz0ej18tPhg7j+UMHpX9JRIVQt+W+4F8VZTw0cgwrqyq6/rDqcRKTfRrmXA372seP+OArxLG6LjMr68JB6UNaHj+6f+8OgAdyR49rfLdi1wAAIABJREFUObaysqLkzbLi4j+PPXFiotFoAihyOhvuz9+147bsnOHTk1IGtZS9Z/f2zaPj4uNuyx4+uuXYW6XFB1dUVRzRc9qZCy+8MPu8887L8ng8/pKSkoYXX3xxL8A555yTsWHDhqpNmzbZAfbs2dOwefPm6lNPPTW1JSEuLy9vbOn5c7lcfggkVO+8806h0+n0lZSUNH322Wdl06dPH/TRRx+Vn3nmmWkFBQX2L774ohqgqKioad26deUnn3xyWktC3NjY6P3ggw9KAfbu3dtQWlramJubG79v377G6dOnp23atKl6586d9QDLli0rPe200zI6+tlOPvnkQYsXL97T0nNaVFTU4+1lP/3006qW7//zn/9UnHvuuYNHjx4d35LkOZ1O73vvvVfc1dCEX/ziF8f7fD6/y+Xy5ufn2998881DACeddFLaihUrisvKylwAS5cuPfTUU09NycnJsRQUFBzxabysrMzVUs7tdvuXLVtWvHDhwgkWi0XvdDp9AHv37q1tia3ltWnPjTfemBMTE6N/7rnnDnS37s5MnTo1qaGhwdvS875r1676b775pnLGjBlpLfF09hp3VX9roZxUdwFwjqZpC9ocvx/4bcu1lVJvAzdqmhayQeBKKSNwOvBkZ+WsVmunW76GRckqTLFxYB0BzqojTi1z1PKLzCwuH5rNf+tqIxNfD0RzbBDd8XUUWzi3e42mthyNyt0u3q8oxazXd+vujatwLab08SRM/RmOb54Dv9zxET3zZllx8ZtlxcVtj8/Ztimv7bE7d207ahzvC4UFB18oLDjY+lhlra12fa3tqOd318qVKwtbkpfWUlNTY3JzcxNPOumktJZjer1et3PnTlvLY5vNdlSC6Xa7/Tab7fDflMrKyiar1WpqrtM8evTopGeffXZyy3mdTqcrLy8/nAg5HA53m/p8FotFD5CUlBSzd+/ew3tq+/1+amtr2/2UmpycbIyJidGXlpb2OAluFSNXXnll1uTJk1MTEhJMfr/fHxMTY7BarYdzsrq6Old3xuk+99xzO9tL/BITE2PKy8sPx9rY2OhraGjwpKamxrRNiBMTE42zZs0alpuba7VYLAa/P7CWZGJiotHpdLoAampquvz0fvHFF2eMGTMm8fHHH9/h8XgO19FV3Z1JSUmJqampOeJ3XllZ2ZSbm5vQ8riz1/hYhLKHeD5tBso173r1CLAFeAkYB/wUyAOeCmEsfwJq6WJyj91ubzch7mwf+lCIyZmCzmCmqeLAUef+1LiPbIsFu+P7eMId37GI5tgguuPrLLZwJsREV1uOSp9UV5FkNGLQ6fC2sy5xW/Ub/0bCqb8kbuJcGja9HIYIhYismpoaV0lJSdmbb77Z4Rrm/nbajslk0iUnJxtbkuJBgwaZ7Xa7G6C6urppx44dtkWLFu3rSUy1tbWu1NTUw9vC6nQ6EhMT290m1mazeVwul2/w4MHm6urqoxKFpqYmb0xMzOEkLCUlpcM/0meccUbqSSedlPb888/vLi4ubvL7/Tz++OMTujM0orvq6upcGRkZMbt3764HsFgs+ri4OGN1dfVRSejVV1891GKx6B977LHtNpvN0zL+uXU87b02rU2bNi3p3HPPHfL000/vtNvth8dMd1V3V/XW1NS4UlJSjnhN0tLSYjr64NIboZwsMwVY3ubYTYATuEDTtD9rmnY78CIwK1RBKKWeItA7fFEkd7c6Fq6Cz2na/9/AOMM2qj1uNjvsaKmDSDDIXnYiLKKiLUe7W7KGMT2xm8t6+r04vvkTxqThssWzGBA+++yziqlTpw6aNGmSVa/XYzQadaNHj47Lzc2N7ex5Pp+Pq666KttsNusHDx4cc9ZZZ2Xm5eVVAaxZs6Y6NzfXOnPmzBSj0ajT6/Xk5ORYxo0bF9+dmL766qvqSZMmpY4dOzbeYDDoLr300sHx8fEddhR+8803lT/+8Y+HDRkyxAwwdOhQc0ZGRgxAYWFhw8SJE1Pi4+MNVqvVcPHFF2d1VI/FYjH4fD5/XV2dx2Aw6C655JLMjhLxntqwYUPVeeedNyQjIyPGbDbrZ82aNaykpKShbe8wgNlsNrhcLp/D4fAmJCQYrrjiimNaAzg3Nzf2+uuvz33llVf2tR1G0lXddrvdPWjQIHNHdX/33Xe1cXFxposuuijDYDDojjvuuLiTTz45fd26dVUdPaenQtlDnAHktzl2HrCmeRvWFsuB2aEIQCn1LIGVJs7VNK3bY6CigS7GStI5j1K76n78rqOXW0szmfjJ0ByeLQjp6ipCQBS05b7g46oKZg3OYm1tTffG+HubsK9/isQzfoOr+Bu8de3OKRGiX9i/f3/jkiVL8i+55JKhc+fOjfX7/ZSXlzcuW7as07kHLpfLe/Dgwfrf//734w0Gg27Dhg1VK1asKAeorq52L1q0aPcVV1yRfcUVV+To9XpdVVWV8+OPP+7WCgNbtmyxr1y5sujmm28eFRMTo8/Ly6s8dOhQfUfl33rrrcIf//jHWT//+c+Pi4uLM9pstqa///3v+8vLy1mxYkXZ0KFD4/7whz9MrKurc3366aelY8aMSWyvntWrV1eNHTvW+sgjj0x0uVzer776qqL1MI9gWLZsWanJZNLfc889x5tMJn1BQYF98eLF7a5U8cEHHxTPnTt3xNNPPz3Zbre7//vf/5a0rP7QHVOnTk0xm82GefPmjW59/Oc///mGrupevXp15U9+8pORzzzzzOT6+nrPb37zm62t63A4HN4XXnhh91VXXZVzwQUXZNXX13tWrFhR2DJ+OJh0XXVX95RSqgy4WdO05c2PxwC7gEc0TXuoVbkzgI81TYsL8vX/BJxLYOxjRWdln3jiiSTAtmTJkqgYMtEibvwNoDfSsHnJUecMwP25o/m2rpY1LmefvO0fDaI5vq6GTMydOxcg+b777gv6H4bWIt2Wu6urdgyhf70XjhzDe+WlbHIcwzWa1ybWmZNIiPH1yf+P0SCa4+ttW87Ly0u+9dZbV7W+FT0QtF32TIjeslqthpdeeumcqVOn2tqeC+WQiZ3Aj1o9/hGBcYj/aVMuF+h8vaJjpJQaDtwJjAb2K6UczV8rgnmdUGvc9R4xQ6ZiSBp+1Dkv8JfCg6THBPUuixDtiVhb7mteKS6kwHmMy6n53OiMsVin/wr0/XUlTCGEiG6h/Ov7DPCeUiqVwJvkXAITcL5sU+5yYFMwL6xp2kEgeKPTI8TvbqBxx7vETbgR+5rfH3W+yu3m1ZIiRqak4O7mDHcheiBibbmvOeBsZHCMmUEmE5Ud9FK3x+9ppG71Q1gTE9HHZeBrkK3ahRAinELWQ6xp2jLgLuBk4EZgPXCVpmmHx2gopbKBc4CPQhVHX9dU8Dk6vZGY7NM6LHO2NYnZQ45pDLwQ3SZt+dickpjEJYMye/BMPzrrCBLPeBB9fE+eL0T/snXrVrsMlxDhEtL7c5qm/YnAkmcdnS8Eujkte6DyU7/lVUypYzos8YGtmnszsjglMYmv60I6nFQMUNKWu29VTTVPjBnLO+Ul1HuPbcinv24fDTvexTrjPurW/A6/86hhbkIIIUIglGOIRZB4a/Jx5q9EZ0lp97zL72dx4UEuSx8sL6gQEWb3ethor+PM5G5P0j6Cq2A1TQdXYZ1xLzpTROYniuhTn5CQ0OHqB0KI7klJSakB2p3hKjM4+gqjBeupv6Tui9+B7+ixifudjfx23278BAZPy9bOQkTOP8pKaOrFmH7nnn+jNyeScOovsa99ot02LwaOqVOnuk888cRngbscDke31tgVQnzPYrE0paSk7J4yZcrTU6dObffWXSi3br6xN8/XNK3TXeUGHI+TutUPdlrE7fdzdeYQ6jweVlZ1utKcEN0mbfnY1Xg8jLDEotfp2NfY0KM6Gra+QfxJ8zANGoe7/Khdd8UAs3jx4nfz8vI+ACQhFuLYNU6dOrXTbbdD2UO8pBfP9dPFNssDVfy0O2g68Ameyh3tnv+0uorfjhzNNoedQ03HuPyTEO1b0ovnDti2nGU2MzM5lT8e7NGusoCf+u9eBMCYNhZP1W7k3s/ANnXqVDcgA8uFCIGQJcSapslw1hBwF39N3ImzqFv9EO29OVa6XbxVWsK87Bwe3rcHb4g2XhEDh7Tlnvm6rpbrBg8lwxRDubs3u8brMA8/G299OX5nTdDiE0II8T0ZQ9zHuIq/xjzqQmKGnY7r0BftlvmytoY6r0eSYdEvKKX+AlwCJBGYDPEP4F5N03qTZYacx+/nS1s1M5NTeL+iN/uVNPcU6wzEDJuJ61Db5Z+FEEL0lvT89EENW5cSN+5KMJg7LLPFYeeUxCRGWGLDGJkQIfE8cLymaYnAZGAScF9kQ+qeDyrK+FdlcDbZ0BlisIy8kNjjrwxKfUIIIb4XsoRYKfWBUmrKMZS3KKV+qZSaH6qY+gtvTT7uyp3Ejr6403J6dMwbmoNJ1+c37RMRFOm2rGnadk3TWi855SewLXvUa/T5GBsXz9i43s+D8nsasa97kpisaVjGXBKE6IQQQrQI5ZCJAmC9UmojsBRYA2zWNM3TUkAplQWcQuB26BVAEXBzCGPqNxp3vEP81Nth1/sdlllfZ2NaUhKXZwzmnbKSMEYn+pmIt2Wl1ALgASABqALu7ais1WrF3cm2yVarNVhhdcvguASmxSfwQkVpt8p3FZ9v0/PEnnQ3ZiP4Cj8LQoTdF+7f3bGK5vg6is1kMoU5EiFEe0I5qe5OpdSzBLZ8fZjA+D+/UqoOaAJSABOBZXO/bi73mqZpPV+8cwDxNVZhX/N7Ar++jv29uIjZQ4aiB+QXK3oiGtqypmmPA48rpcYBs4EOs0u73d5hQmy1WrHb212TPWS+cDi44rgTMDudVHaSqEN347OjX/MY1tMfoKm+DlfB6uAF2+vYIiea4+ssNkmIhYgOod66OR+4Uyl1DzADOBXIAiwEenl2Ap9rmnYwlHH0Z9bTFkD+P6CDP7Z2r4e/FB7EajDQ5PPhkol2ogeipS1rmrajuad6CaCF8lrB4vb7WVdbw7TE5KCtD+5rrMS+9gmMySOCUp8QQgx0YVllonk2+OrmLxFEjry/kBDTdUfcFRmDcfv9vFFaHIaoRH8VJW3ZAIyJ4PWP2T/KSoL+YdRXX4qrvpSYYTPxu524S/OCWr8QQgwksuxaH+dvqkU37BxMcTbcZRs6LPdueSmPjhpLXl0tuxrqOywnRDRRSiUAVwHvA7XAeOBB4ONIxnWsXH4/0xKTsHs8QW9/3tpD+L2yCY8QQvSGLLvWH7jsxE24HvQdf76p93pZUlzIjUOGdjHqWIio4gdmAfsIrEH8AbCcwDjlPiVeb+C8tEFBr9dbV4Cvvpy4STdjTB8f9PqFEGIgkB7ifsBfswufvRhL7vk48z/qsNxGRx0HnA2y+avoM5qXWzsv0nEEw9d1Nq4ZnEW8wUC91xv0+l2H1pBwyi9wfPNnPFU7g16/EEL0Z9JD3E80bHsDy5gfootJ7LSczePh6swhQVkXVQjRfY0+HxvttZwYnxCS+j3Vu3F8u4iEk+/EmNInlmkWQoioIQlxP+FzlOIqXEvs8Vd0WXZPQz23ZA0jRicvvxDh9LeiQ3xdVxuy+j2V26n/bjEJp9yFIWl4yK4jhBD9TVgyIqXUl0qp2UqpjvcaFr3WuOt9YoZMQ2dJ6bTcBnsdexvruSpzcJgiE/2FtOXe8QIXpaUz1By6X5+7fAv1m17BeuovwWgJ2XWEEKI/CVcXoRv4O1CslHpaKXV8mK47oPjd9dSuWoDfWdNl2aWlxVR3sUmAEO2QttxL8QYDZySnhvQa7tI8aj9/GDxOSYqFEKIbwpIQa5p2NjCOwBvpjcA2pdRnSqlrlFKyTU8Q+V0OzCN+gCljQqfl6r1eVlRVMDYuXoZOiG6Tttx7a2w1zEhKwRDi6/idNejjB2Od/r8hvpIQQvR9YcuENE3bpWnaL4GhwFwCi+u/ARQqpR5XSo0MVyz9nacmH09dYbfKnpWSKkMnxDGRttw7pa4mSlxNDLPEhvxavvpS7OueAJ0BnSU55NcTQoi+Kuxdg5qmNWma9hrwC+ALIB24F9itlPqHUkqys17y1h5Ap9N32UsMgaETJycmy6oT4phJW+65Jw7kc8DZGJ6LeV2YMieROPM3Xc4vEEKIgSqsCbFSKlYpdbNS6mvgGwJvoL8AsoDbgNOApeGMqb/SGWOJP2k+OlNcp+XqvV7+XlLIRYPSwxSZ6A+kLfeOH5g9eCjxhlAPnAhwl35H08FVJJ62AJ2586UZRe8ZYqwMH3wiZ4ycTlrmiZEORwjRDWHZmEMpNQH4KXA9EE9gt6n7NE1b1arY/1NKlQL/CEdM/Z3XXoir+Btix15Ow9bO85IN9jo22+vQgWzaITolbTl44g0Gpicl80l1VViu59y7HJ0hBuuM+7B/+Rh+tyMs1x0oDMm5mIfOYFJKOjfUrqceA4cwc9ADroZIRyeE6Eq4dqrbBBQDzwJ/1TStpINye4F1YYqp32vc+R5J5z6Oc/8n+OpLOy3rBe4bPpJlFWXsaqgPT4CiL5K2HCRra2v4UXpm2BJiCCzNiCEG62n3Yv/ycfweydR6R4dx0DgG2/cxa0g673ls7Ni2loccRVS1WsXHarVGMEYhRHeEKyG+ClimaVqn+5VqmrYDOCc8IfV/flcdzr3LiTvxWhxfP9tl+f9UV3JL1jB+k78bl98XhghFHyRtOUi2Ouxcmxm6rZw70rj9bXQnzsKYOgZ3+aawXbffMZgx6nRcM3Qk05063i/NZ7/tG7x+uc8mRF8UloRY07R/huM64mjOfR+TNOIcjINOwFO5vdOyG+x1nJKYzFWZg1laWhymCEVfIm05eHzA/fm7InLthm1vAGAaMhV32WbwyZrk3aWLsRI3YTYAvg2L0ZVt4DeVZdR6PBGOTAjRG+HaqW6fUmpSB+fGK6X2hSOOAcnnwfHNn/HWHuxW8ddLi/gmhFvLir5N2nJwxer13JyVHbHrG1PGoJdJdt1mSp9A0jl/YERjIfMrP8bp8/F6aZEkw0L0A+FaZWIE0NFepRZgeJjiGJC8tQfRxVgxDT6py7L1Xi97Guq5KC1dNuwQ7RmBtOWgafT5GBMXz6jYzleDCdn1t7+Fr6mOmJwzInL9vkNH7NjLiZ9yK7mbX2C+N5//VJXLJGQh+pFwZjwd/e2YBtjCGMeApNMb0MV0b61hP5BjiZUNO0RHpC0H0TpbDaclRW59YJ3ehGXURVhG/U/EYoh2cRNvxDjoBAxfLmSOFZ4t2M8Whz3SYQkhgihkY4iVUncDdzc/9AP/Vkq52hSLBVKBt0IVhwjw2ovw2oswJI3AW3ugy/Kvlxbx6KixfFtXK6tODHDSlkNrXa2N+dk5Ebu+39OAY93/YT3jQXzOalxF6yMWS7TRmeLxe5tw7vmQeLedKo+LBXttOH0y6ViI/iaUk+r2AZ80fz8H+BaoaFOmCdgOvBTCOEQLgxnrqXfj+ObPeGr2dlq0ZcOOcfEJkhALacshVOF28fv9nbfHUPM5q3GsfwrrzF/ja6rrcgLuQGE57lK8tv1kV2/mrlGjeTB/t4wXFqKfCllCrGnaBwQW7UcpBfB7TdNkwk0keZto2PYmcRPnULf6IbrahmODvY4N9jqsBiN2r7wJDFTSlkNvmNnCtMQklDNy6wJ77YU4vvkzCdPuoO7LR/E5Olpiuv/TWZLRGcw0bnuLVKORn48cw8tFhZIMC9GPhWUMsaZpN8kbaHRwFa3H727AnPuDbpU3AA+NHM1xcd0bfyz6N2nLoVHtcXN+WjoWnS6icXiqdtKw/S0M8QN3/oDOnETizPsxZUwE/FyRMZiPqyrY6KiLdGhCiBAK5RhiLzBD07SvlVI+Ou+O9GuaFq5NQga8hi2vYp15P66ir/G7Ov8j7wXeKC3mVtmwY8CSthx69V4vO+sdTIqLR9VFNvFyHVoDgGnINNylG8Afvk1DIk1nSiBx5q9pOrSGpv3/JUan5+8lhbhlsw0h+r1QvnH9Dihs9b38RYkSXnsRTYfWEHfitdRv+GuX5Vs27LgkPYN/lne+BbTolyLWlpVSZuB54AdABlACLNI0reutF/uYtbU1nJgcudUmjqTDlDYWT/Ue/E0DZF1yvYmEU+/GVboB5+5/8YPUNMbFJfB8YffWcBdC9G2hHEO8sNX3D4fqOqJnGne933xLsHteKykiwndzRYREuC0bgVLgfAKT+yYCHyulSjRNezvMsYTUN3W17IyaOzB+GrYuBaMFU+Zk3GUbIx1QiOlImHobvoYKGre/Q47FwmXpg3lk/55IByaECJOw3NpUSukBvaZpnlbHLgDGA59omtbf/9pGH48Td/HXxGTPxFXyLXibOi3e4PMSo9Px06E5vFJ8CJfcQhyQwt2WNU2rBx5sdWijUmo5MBPoVwkxwKTYOHQGI1/YaiIdCgB6UwLxk2/B8d2L4Oy/PaU6cyJ+dwP1m15Bh5/5Q4eztLSIMlfb1QWFEP1VuMb6vUlgWaYbAZRS84G/NJ9zK6Uu1jRNhSkW0Yo+bhD6mAR8jZ0nxMDhJPjKzCG8UVoc6tBEdIpoW1ZKGYHTgSc7KmO1WnG73R3WYbVaQxBZcDT4fFyRnsnGqFnVpQnftr9hnXYbnm//SPT+5gJ68trqUsbir90H+W9jTQjsGPhSdTkVPm9Q/690VJfJZAraNYQQPReuhHg6cF+rx/9LYL3Se4C/Ag8AQXsTVUr9jMB6qROB9ZqmnR2suvsb5+4P0Blj0cdl4Gso77J86w07dsv6xANRWNtyO/4E1AKvdlTAbrd3mBBbrVbs9ujdYWwvEKfTkehyU9TkjHQ4AfaNmE3LiJswj5rVD4M3OntNe/raxo0Yh7PyIL6GaqZYExkcY2ZFVdtltkMXmyTEQkSHcG3dnAEUASilRgO5wPOaptmBV4AJQb5eCfA48EyQ6+2XTJmTSTj5TtAZuixb7/XycvEhYvXh3PVbRJFwt+XDlFJPEegdvkjTtOjMynrJD3xpq2GEJTbSoRyhaf9/8dcXEz/plkiHEjS6mET01iwatryGr6GCeIOBOUOyyW+M3FrQQojICVdWUwekNX9/NlCpadrm5sdewBLMi2ma9p6mae8BZcGst79yFa3D77JjGX1Rt8pvdtjZ5LAzJjYuxJGJKBTWttxCKfUsgYl1P9A0rTIU14gW/ywv5cva6BhD3Jp35xvoY1PRx2dEOpQg0JEw7XbMQ6cfPnLD4KF8XWeTO19CDFDhGjKxFliglPIAdwEftTo3mu+XdIqozsYeRvO4QwhCfHvfJnbafZjse6G+qMvisTo9dwzJ5pWqcvK7uLXb7393IRSF4w7D3paVUn8CzgXO0TQtuPeyo9QlgzLY2VDPnmhKznxu7F8+CoDOkoLfGX1Je3fFjvsxAI27lgGgA0pdTayo7HrYmBCifwpXQnwvsBz4F4Glkx5ude4aYF2Y4uhUR2MPo33cYVDis9uJ2fYmluNnU/f5b8HX+aQeO7DE72dWZha/yd/V4aoTA+J3FyJROu4wrG1ZKTUcuJPARL79zVtHA3yhaVr3bmn0QR6/nzOSU6IrIW5mSMwhdtyVOL56OtKh9Igpcwox2TOpW/1b8PuINxhIN8XwQYXcUBRiIAtLQqxp2h7gOKVUmqZpVW1O/4LAOqMiwlwFXxAzeCqxx/2Ixp3/7LJ8y4YdM5NTWVXT9mUV/VG427KmaQcJdOANKOtra3h09FheKymKul3SvHUFOL56Bp0xFr/P3eWH52iij8sgfsqtOL565vAunVdlDMHr93OgtOs7Y0KI/iusW6y28waKpmlbwhmD6Fz9ppfRGczdLv9y8aGoe8MWoSdtObRqPB62ORxkmy3sdzZGOpx2+IkddyXo9DRs/nukg+m22HFX0bjrfTw1ewEYFRvHZGsi9+/dGeHIhBCR1i+XClBKGZVSFgIJv14pZVFKxUQ6rr7A31SHr7GauPE3gLHr+VFuv59ko5Hf5o4hRrayEyJoFhUejNJkOKBxx7uY0k8kZtjpkQ6le/RG6jf+P5r2f78q4KXpmbxVVkyDL1p2CBRCRErYeoiVUnOA64Acjp6J7tc0bVQQL/cb4LetHjcCqwnMihdd8XsDPSjdvBVq83godTVx7eAsXi2R2479XZjb8oA2f2gOS0uLsHu9kQ7lKH5PI46vn8M68368dYfw1kbvTnbGQeMwj/gB9d8+f8TxRYcO4oqa7bKFEJEUrq2bHwQWAluBjQQmyISMpmkPc+RkH3GMXEXrMSQNRx+fibv46y7Lv1ZSyO9GHccUayIb7HVhiFBEQrjb8kDnB05NSkFVR+dKc157EQ2bXyXh5J9Tt/oh/O7omwQIOjyVO/Davk/YU4wmbs7K5umC/RGMSwgRTcLVQ3wL8JymaXeH6XoiCPw+N/ET52C3F+G1d97z2+Dz8edDB6mPwp4sEVTSlsNobW0Nl6dnRm1CDOAq/gpjyijiJs2l/ttFkQ7nCDpTAtbTH8C+7skjlom7fnAW+xobkNkPQogW4RpDnAb8O0zXEkHisxfTsP2twC523Zhod9DZiMPr4bL0zIG3LMDAIW05jLY57PiBuCjfGbJh+9s0bn8n0mG0oSN+6nzc5ZuPSIYnJljJscTyoaw5LIRoJVx/ZVcDk8J0LRFEroIv8NTsI37yzd0q3+TzcUJ8AhcNSg9xZCJCpC2HkQ/4/f690T/py+/F11BB3PgbMA46IdLRAGAZexk6g/moRN3n98vqOEKIo4RryMRdwHtKqSoCO1tVty2gaVqU/8UfuOo3vULiGb/BMvpinHuXd1rWDywuKmDhyDHscDiI3hu9ooekLYdZnF7PLUOH8edD0TtprYXzwCf4GiLf6k0ZE7AMP5va1Q+B//thXKNi49he70D+gwoh2gpXD/FuYDzwClAGuNt8ucIUh+gJnxv7V89iTBsLOkOywd4kAAAY+klEQVSXxavdbv5eXESWuetl20SfI205zBp8PgbHmBkTFx/pULrkc5SgM5pJOOUuMERmpUt9bBrxU+bhyPsL/qbaw8eHxJi5OycXqzGsy+8LIfqIcP1l+B3I/IW+zO+swfHV0+hMcehM8fgaKjot/6098EZ0Yloa28IRoAgXacsR8GVtDTOTonMr57b8Lgd+TyPxk26i/rsXw359n8tB/YaX8FTtOuL4nKxsPqgoo9bTd3bWE0KET7i2bn44HNcRoWfKmIg+Nq3LoRMABp2O2WkZfOj1scZW02V5Ef2kLUfGepuNm7KyIx1GtwWGWT2EOVc7YiOMUIs9/sc0HfwMd/mmI46Pi08gVq/nkyherUMIEVnh3JhjCvAgcCaQDJyiadp3Sqk/AJ9rmrYyXLGInnMVrQfAkJyL114M3o6XofX6/fytooyfZ2ZxoLGRwiZnuMIUISRtOfyqPW6e6ktr5npdOL7+E4lnPIS3tgBP9e7wXLbuED6X/ajjO+odPH4gX8YOCyE6FJYxxEqp04F1wPHAG22u6wPmhyMOETzmnDMDy7F1Maa41OPmzdIiLh6UEabIRChJW46cHEssNwweGukwus3XUE79hhdJOPlO9PGZIb2WMe14dJnTcBV/Dd4jh7FfmzmEcfEJNEb7Sh1CiIgK16S6x4GPgROBX7Y59x1wUpjiEEHSsOU18PuJn3wLdLHq8NpaG38tKsAS5Wupim6Rthwh5a4mZianEG/oemJrtHCXb6Fhy+sQwu2R9QlDSJh2B7TTMzwqNo7pSSkcbGwI2fWFEP1DuDKUk4AXNE3zc/SEnEpAFq3ta/w+HN8+jz4unbjJN9NVUuwH5g3N4QepaWEJT4SMtOUIcfp8bHbUcWpicqRDOSau4q/wOW3EnnB10Fee0JkTsU7/FQ3b38Jfc+QkOj0wNyubt0qLo38dZyFExIUrIXYCcR2cGwLUdnBORDNvE/b1/4chYQhxk26iq6T4rdJiLkvPJNcSG574RChIW46gNbYaBsVEZjmzXvG58TpKwRe8rd11xjis0+/BdehLXIfWHHXeotfzbV0t6+tsQbumEKL/CldCvAa4SynV+l5fS+/SLcCnYYpDBFtzUozP02XvT7nbxZLiQuZnDw/bfzwRdNKWI2iLw847ZSWRDqNHXAWfo49NJf6kn4Le1LvKjBasM/4XT/VeGne9d9TpZKMRs97ABxVlvbuOEGLACFde8iCBW62bmr/3A3OUUquA6cDCMMUhQsHjpGHLq+j0RmJPuIbOeorz7HU8fmAvvk5LiSgmbTnCploTuTS9b05S/f/t3Xl83HWdx/HXTDIzOZq0zdm0NC20UA+6UO8VKyhfVJRdi7qrLuuDB4c3riCrq4JcArqosMAD1mVhUdFVLhEQYfULUhGE0lYotUCP3E3SXE0yySRz7x8zrSXN2czxm5n38/HoI+n8fpl5t8mn8+n39/19v7GxfnAXU/GOi3F5prrQMAvRMOOtTybuZZjEeUuXc9KixUf+/CJScDLSEBtjXiSxRNM+4BISvdAFycMnG2NeneprJXfEoyGiw+3MtG/D/kiE9Yuq+FRD7twxLwmq5ezbGwxiqmrInVvrDhGPMbr5VqLD7VSuvwx3+Rwbe7eHipMuwVXkJdS2cdJT1i+qorK4mEf7elIQWEQKRcbWITbGbAVOtdaWAFXAoDFGt/7mk1iYUMczuMuXUL7u04xuvoXEbr6He354kNOrazllcRVP7h/IbE6Zl0zWsrX2i8DZwN8AzxpjTknH6+SS7lCQ7mCQEyoq2eofznacIxAnsP1n+FaeSuX6yxl7+V6CrU/O8DUuihYfQ3T/Hka33Uk8MjbpWUUuF39fW8dNbS2kbrayiBSCjG/qbowZBzoz/bqSObHRbsLdW6k8+Qpif7kD/C8eds54LMaN7c1cevRqmsfGaB2f/A1OnCtDtdxFYqm3twJ/m+bXyhmPD/Sz2DPPebhZFmx5nEj/K4nd5dr/iNu3kFhwKHE/wgGuIjxLTqT0uA3EY2H8T19LzD/1j1w0HueS3TsJpXGZNxHJTxlpiK21TcCZycutE48dDzxkjDkmE1kkM8Z3P0J0uJ0Fb/4cvqJ7Cbb+/rBz9oVCXNfSRKd2sMsZma5lY8wvk8/dmKrnzAfP5cnKCVH/XkaevwmAklWnE+7dTmRgN+XrzsflKadoYSPRoTbGdj5EuOv5aZ/rlIpKikvKeEA30onIEcjUCPFKwDfFsRJgRYZySAaFe7YR2fIDfG88n+Ka1zP6wh2HbfXcHhynoqiYzyxbzq0drdpNyvlW4vBarqioIByefKrOgeNONtt871pQgc/l5nF/5la6S+vfXeuDiXnR5aW4ejdDdIzoy3shPEoJUDLNazd6vby/cjHf797r2O/vVLk8OT7SL5IvMjllYqo7rd4C5MdwhxxurIfhjZdRsur9iUuhbg/EXtus+KMResIhLli+kutbmzT3z/kcXct+v3/KhriiogK///AdzZxiLvlejUT57LJGftXZkeZUCZNlq/Z4OLWqhqU+H9UeL4/09vDs8CBfWr6CzmCQ3YFRXh4dneMUBj8M9s767BK3m7Prl3HPQB8tg/vn8DqZM933VQ2xiDOkrSG21l4EXJT8bRx42FobmnBaKYmbcn6RrhziALEw47t+DUDluy5hZOttxEa7X3PKz7r28uXGo/mnhmXc1bU3GyllCqplZ2oaCxCJx1hTVs6rgdGMve7C4mJMVQ3PDg0SjEUJxWL8Yf8AfeEQ/eEwLuDpwf2sKCnl9Jo61lUE+VFXBw1eH12h4IzPP1fjsRg/6eqg1a2FHEXkyKVzhLgJeDz5+dnAZmDif/uDwA7g9jTmEAcZ/tN1EBnH23gysbF+Ir3bAYgBt3a0Up+Lu3DlP9WyQz3W38uCosxc6CsCPlRTx+nVtTw3NMhYNMpAJMyvJpmzu9U/nFgBI3nMBXzuqEZcuHisv4dnhwZJxeSoT9Yv5bnhQbaPjjh2qoSI5Ia0/UtqjHkQeBDAWgtwlTGmOV2vJzkikriBLj4+QPmJ5xLZv4exHfcQC/QSjMVoGx9nQ209vaEQTw858/JnoclmLVtri0n8O1UMuJNLvcWMMRNHqAvSU8kpAi5mWv17/nxuNw1eH1c176InNLe//jhwRdMu1i6o4IM1ddR5ffyqd9+8cp+1ZCmrSst4oLd75pNFRGaQkaEFY8w5mXgdyR3hnpcYeuLrlKw6ncqTryTY+gfGdz5EPBLguaFBvr5yFWOxaI6us5q/slDLlwKXH/L7MWAjcEqGczjWh2rqcAMPp2kjihMWVPCexdXcMdjP7Z3tR/w8cWDbiJ9tI36KSMw/vmTlah7t72Xj/n5C8dm3xh+tW8Lq0nK+17qHcd2IKyIpkLGb6qy1ZwOfBBpJ3I1+qLgxZlWmsohDREOM73yQYOuTlL7uoyw89TqGnvgaXaEAN7Q1c/GKo+lrbaZNaxQ7SiZr2RhzBXBFqp4vH700MsyFjUfzSF9PSqYhHOo9i6vZUFvPje0tUJy6vfGiQH84zE3tLfxdbR1n1NRxU3sLe8am399lmc9HXzjMxv0DPNzbo/WGRSRlMrUO8beAK4HtwAsk5huKABAPDhF48X8Ye+U+4uEApWs+wt7BJq5tfpnuUDAjl4NldlTLztM2Pk5/KMy6ioVsSeESbMt9JXygupZrWnbTEwqlZY5uy/gYN7e3ssznoz8cZnVpGW+qXMiL/mHax8cJxKJ4XC6OKyvnpEWLWbugkpvamtk1Q+MsIjJXmRohPg+40Rhz0YxnSsGKBxPTI4JtG4lHw+zzVbNo7Qb+1f8UP2zdRbs28HAC1bIDPdS3jyJSt8pCnddLe3CcS/e8SngOUxmO1N5g4v9Vg5EwsXicT9QvZYnPx03tLfSGQmyoXcJW/xA/7eokENPCjCKSeplqiKuBhzP0WpLjYmP9AMRjIQIDO/ltw3q+5ivjpuAi9nRsJRaY/RqljuL2UFy1mvKSSo4qKaXG42VRcTF/8h6Ft/lRPr6wjNLyOjyBbjZ6lrF5PAD+TdlOPZFq2YFeGvHjIrEm73zn1J60cDEb6ur55u7MNMOH6guHua+nm/t47Y1y17TszmgOESk8mWqINwInAE9k6PUkH0TGCTZbNjZbAg2v49NVcb67/jJCA7sS270WlxxctcIR3B6Kyutwly+hqLyeWHiUBV3PsPaNZ9I49DILY+P8+KgzOXlkB2+K7KM3FmJwPEp8fz+DgWFsZITQSJgxfxf9rj7wZXLfnFlTLTvUqVXVrCwpm9eNb2vKyvnEkga+07In482wiEg2Zeod90Lgl9bafuA3wMDEE4wxujtCpvR81yts2+cmtGMLDQuXMgKUn3geobaniAzswlN/ApGBXQdHl9PG7YF4FJe3guKqYwl3baZ0zZl4G9+N21dJhb+NNf5X8Qb389vAKB+urWfBwBZ2j/rZMh7A33otDwEPTfLUL44DHFhqboyKYkeuq6padqhnBgc589glVBV7GIhMvXX1dM6oqeM/O9roDGpquIgUlkw1xDuTH++c4ng8g1kkRwVjMZb6fHyjvpLbIxW8uPkWwIW7rAbvsndQdvw/QzxKZLCF6Egn0ZFOQns3QTwKuA7bMnoyruJS4rEIuIvw1q/DXV5HUVkt7vJ6isrrcHkXMPzUt4mH/BQtaCAMuPY+g7/9j1xcW8HKklK2j/rZMjxEeHhoyh/4HKZadqhALMpTgwN8oKaW/+3unNPXlrrdAFzf1qwbWEWkIGXqjesqtFCApEBnMMgNbc18eflKHujt5sn9A8QCvYxs+g8A3GW1FC1cQdGCBjw1byDcuYXi6jV4G9czuvkWytd9huKq4yAeIR6LUlTsY6G7mEjvDkb/fBvl685nvOl3REc68TS8iVigl8j+3UQ7niE2uo/Y2AAQZ5nPx9sGN/H21WtoGgtw2952ftQ5RF84lO8/6KplB3usv5cVJaVz+prELnIr2DM2ykO96VnLWETE6TK1MccVmXgdKQxNYwGuad7N+sVVhx2LBXqJBXo5dCw43LONcM82AAI77sZVXALuIlyuYspKvYwO7yceTqx1PPL8zQe/bnTzLa95bo/LRb3XS1coyFlLltE2PsZte9toGkt8bW84/zdPUy0722Akgn90hGNLy2a9NNmG2npK3W4eUTMsIgUsbQ2xtfaYuZxvjGlKVxbJPz3hEPf3dFPn9fKPdQ3c2dXBaHTm5ZjiwSHiwUPWao1XEBvzT/s19V4v711cw0mLFvPc8CB3de3lutbC+XFVLeeWBUVFXNh4NJc17aQ/PP00oRqPh3cuWsy3m3ajxcxEpJClc4R4N3O7tJq6bZCkYPSHQvSGQ1x5zHHc2tFycLR2vopcLpZ4vewNBvlYXQM9oSBXNu0qiFHgSaiWc8hQJIId6ONjdQ381962Kc/zulz0hcNZWV5NRMRp0tkQn5PG5xYBElvA3r2vi92BAOcuXc6VTbvm9eZe7fFwyuJq3r2oip2BUW7paOWWjtbUBc5NquUc85v+Xq5edRyNJaWTbn1eUVTMpUev5taOVlq1NbqISPoaYmPMj9P13CITbfEPsdU/RBw4d+lRbB/x8/zw0KyGNYtcLpb7SmgZH+OMmjoi8TjfbdlDV0hLT4FqORcFYzGuaNrFaDR62NbnJW43X1lxNM8O7VczLCKSpOWRJG8ceNPfNDTIR+sb+HBtPQ/29rBpeHDS89eUlXNKVQ3HL11O89gY17c18+OuvZkLLJJGo9EoR/lKOG/pcm7uaGEgOZ/4H+ob2BMI8EDvviwnFBFxDjXEkne2j46wvWkXry9fgCv52OXHHIsbiAF9oRC3dLTSWFJKZzjE/Z0d9M1w85FILuoIjrNpeJCrV62hNxTkxrYWftHdqTnDIiITqCGWvPXy6MjBz29ub6GyqBi3y8Vwchev3w30UVFRgV/NsOSxR/t7+cPgAHUeL/5oRM2wiMgk1BBLQRgIhw9eMhYpNKPRKM1RzRcWEZlK3jbE1tpi4AfApwA3cB/wRWOM7pQSERERkYPc2Q6QRt8ETgaOB44F3gh8J6uJRERERMRx8rkhPh+42hjTaYzpBa4AzrHW5vOfWURERETmKC+nTFhrFwHLgT8f8vBW4MDjk+604PF4Jn0+j8cz5TEncHI+J2cDZ+ebLptTMzvBdH83Tv5+g7PzOTkbODufalnE+fKyIQYqkh+HDnlscMKxQ1UCnHXWWenMJJIOlbz257yQqY4ll6mWRbIoXxtif/LjQqAv+fmiCccO1QE0AsNpziWSSpUkfnYlQXUsuUq1LJJlrnierklprW0DLjLG3J/8/fuAu4FqY0wsq+FERERExDHydYQY4HbgEmvtn4AwiZvq7lQzLCIiIiKHyueG+FqgBvgLidU07iWxFJuIiIiIyEF5O2VCRERERGQ2tCaviIiIiBS0fJ4ykRLW2i8AXwUaSEy/uNAY81R2U4nIXKmWRURkKpoyMQ1r7ceBnwJfAP6Y/HgO8AZjTFuWs90AfAnYDniBlcC/GGNuz2YucG42a+0zQDlQBNxjjLkqm3kkc1TLR8ap2VTLIpJqaoinYa19DthmjPn0IY/tAu4zxnwje8kOZukzxtRYa1cmM70l25kOcGI2a22lMWbYWltEoin6vDHmhWznOsBaewVw+RSHW40xKzOXJr+olo+cE7OplkUk1TRlYgrWWi/wZuD7Ew79Fnhn5hPJfBljDmzY4E3+ctoI2PdJbCzxOuAjycc+D5wLvDULefKCajn/qJZFJNV0U93Uakhcjts34fF9wJLMx5FUSI4U9gDWGPOCMeYiYNAYcyLwQWBHti4HG2NGgAAQMsZ0G2O6SeysGDXG9GYjU55QLech1bKIpJIa4plNnFPimuSxbIuQHCVxIEdlM8a8HVgGnGitPT7beSSjVMvz46hsqmURSSU1xFPrA6IcPoJUx+EjTdnWDZRZa6/OdpBJOC5b8nLrE8AHsp1FMkK1nBqOy6ZaFpFU0RziKRhjQtbaLcBpJHa5O+A04P7spHotY0xN8mMEWJ3lOK/htGzW2kVAsTGmz1pbArwPuGHCaY4aAUty2ghmzlEtz4/TsqmWRSQd1BBP73rgLmvtJuBp4HPAUuCHWU0lR6IKuNda6yFxZeQeY8yvJ5xzcATMGHNpxhNOzg9UJy8J7zDGxLIdKEeplvOHallEUk4N8TSMMXdba6uBS0ks5r8d+KAxpjW7ycBaO+1ogzHGlaksEzkxmzGmicRKA5Mdc9QI2AS/AwaAl4BaEpf/ZY5Uy0fGidlUyyKSDlqHOMdZa93AcyTWtvxYtvMAWGuXA3eRmKMZBq40xvwyu6lEnE21LCKSPRohzn2fB/bgrO9lhMS2uC9Ya+uALdbax4wxgWwFmmmkayrZHJ2TgqNangXVsoikg0aIc1jyDernwDXAF5wyqjSRtXYbcEa2t8idyIkjclKYVMvzo1oWkfnSsmu57XvAtwDH3pxhrX0L4AHas51lEgdG5ESyTbU8P6plEZkXNcQ5ylr7biBujHkm21mmkryJ6SfAecYYR12KSI7IfQS4LdtZpLCpludHtSwiqaCGOHe9EzjNWtsC/AI43Vp7R3Yj/ZW11gc8AHzHoW/0jh+Rk4KhWp4f1bKIzJsa4hxljPmuMWaZMWYl8AngUWPMeVmOBYC11gX8CHjCGHNXluMcJhdG5KRwqJaPnGpZRFJFDbGkw0nAx4EN1toXkr/WZjvUIRw9IifiIKplESkIWmVCCpq19hTgAt2ZLpLbVMsiMh8aIRYRERGRgqYRYhEREREpaBohFhEREZGCpoZYRERERAqaGmIRERERKWhqiEVERESkoKkhFhEREZGCpoZYRERERAqaGmIRERERKWjF2Q4g+cla+17gK8A7gAqgA3gEuNYY053NbCIiIiKH0sYcknLW2q8C1wH/B/w30AecAHydxFUJY4zZnr2EIjIb09WyMWZpNrOJiKSSGmJJKWvtycDvgZ8bY86acOwo4AUSb6rHG2MiWYgoIrMwUy0bYzqyk0xEJPU0h1hS7d+AIPDliQeSb6CXAmuAMzOcS0TmZqZaFhHJGxohlpSx1hYDw8ArwNumOG050ATcZoz5bKayicjszaaWdYVHRPKJbqqTVKoGSoF1QHiGc5enP46IHKHZ1LIrc3FERNJLDbGk0oE3yN8DX5vinHLgyYykEZEjNZtaFhHJG2qIJZX6gDGg0hizebITrLVrk5+2ZyyViMzVjLUsIpJPdFOdpExyTuFGYK21tnGK085Ifnw8M6lEZK5mWcsiInlDDbGk2nWAB/j3iQestUuBi4FdwAMZziUiczNTLYuI5A2tMiEpZ639BnAt8BhwO9ALrCWxMYePxMYc27KXUERmY7paNsboxlgRyRtqiCUtrLWnARcBbwcWAJ38devmzmxmE5HZm6qWjTEXZDWYiEgKqSEWERERkYKmOcQiIiIiUtDUEIuIiIhIQVNDLCIiIiIFTQ2xiIiIiBQ0NcQiIiIiUtDUEIuIiIhIQVNDLCIiIiIFTQ2xiIiIiBS0/wfJTmIHSATXawAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "dark" }, "output_type": "display_data" } ], "source": [ "#explore the angular dependence of scattering for various sizes and materials\n", "\n", "dia = 350\n", "kr = np.ones((1, 1), dtype = np.float64) \n", "m = kr -kr + 0 + 0*1j \n", "theta = np.arange(0.0, 180.25, 0.25, dtype = np.float64)*np.pi/180.0\n", "fig1 = plt.figure(figsize=(10,6))\n", "\n", "\n", "#gold\n", "lam_res = 805\n", "kr[:,0] = np.pi*dia/lam_res\n", "nkval = get_nk('./materials/gold.dat', lam_res)\n", "m[:,0] = nkval\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m, theta)\n", "per = np.abs(S1).transpose()\n", "par = np.abs(S2).transpose()\n", "ax1 = fig1.add_subplot(2,2,1)\n", "ax1.plot(theta*180/np.pi,par,'b',ls='dashdot',lw=1,label=\"Parallel Polarization\")\n", "ax1.plot(theta*180/np.pi,per,'r',ls='dashed',lw=1,label=\"Perpendicular Polarization\")\n", "x_label = [\"0\", r\"$\\mathregular{\\frac{\\pi}{4}}$\", r\"$\\mathregular{\\frac{\\pi}{2}}$\",r\"$\\mathregular{\\frac{3\\pi}{4}}$\",r\"$\\mathregular{\\pi}$\"]\n", "x_tick = [0,45, 90, 135, 180]\n", "ax1.set_xticks(x_tick)\n", "ax1.set_xticklabels(x_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='in')\n", "ax1.set_xlabel(\"ϴ\",fontsize=16)\n", "ax1.set_ylabel(r\"Intensity ($\\mathregular{|S|^2}$)\",fontsize=16,labelpad=10)\n", "ax1.set_title('gold')\n", "\n", "#silicon\n", "lam_res = 1050\n", "kr[:,0] = np.pi*dia/lam_res\n", "nkval = get_nk('./materials/silicon.dat', lam_res)\n", "m[:,0] = nkval\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m, theta)\n", "ver = np.abs(S1).transpose()\n", "hor = np.abs(S2).transpose()\n", "ax1 = fig1.add_subplot(2,2,2)\n", "ax1.plot(theta*180/np.pi,hor,'b',ls='dashdot',lw=1,label=\"Parallel Polarization\")\n", "ax1.plot(theta*180/np.pi,ver,'r',ls='dashed',lw=1,label=\"Perpendicular Polarization\")\n", "x_label = [\"0\", r\"$\\mathregular{\\frac{\\pi}{4}}$\", r\"$\\mathregular{\\frac{\\pi}{2}}$\",r\"$\\mathregular{\\frac{3\\pi}{4}}$\",r\"$\\mathregular{\\pi}$\"]\n", "x_tick = [0,45, 90, 135, 180]\n", "ax1.set_xticks(x_tick)\n", "ax1.set_xticklabels(x_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='in')\n", "ax1.set_xlabel(\"ϴ\",fontsize=16)\n", "ax1.set_ylabel(r\"Intensity ($\\mathregular{|S|^2}$)\",fontsize=16,labelpad=10)\n", "ax1.set_title('silicon')\n", "\n", "#silica\n", "lam_res = 575\n", "kr[:,0] = np.pi*dia/lam_res\n", "nkval = get_nk('./materials/silica.dat', lam_res)\n", "m[:,0] = nkval\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m, theta)\n", "ver = np.abs(S1).transpose()\n", "hor = np.abs(S2).transpose()\n", "ax1 = fig1.add_subplot(2,2,3)\n", "ax1.plot(theta*180/np.pi,hor,'b',ls='dashdot',lw=1,label=\"Parallel Polarization\")\n", "ax1.plot(theta*180/np.pi,ver,'r',ls='dashed',lw=1,label=\"Perpendicular Polarization\")\n", "x_label = [\"0\", r\"$\\mathregular{\\frac{\\pi}{4}}$\", r\"$\\mathregular{\\frac{\\pi}{2}}$\",r\"$\\mathregular{\\frac{3\\pi}{4}}$\",r\"$\\mathregular{\\pi}$\"]\n", "x_tick = [0,45, 90, 135, 180]\n", "ax1.set_xticks(x_tick)\n", "ax1.set_xticklabels(x_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='in')\n", "ax1.set_xlabel(\"ϴ\",fontsize=16)\n", "ax1.set_ylabel(r\"Intensity ($\\mathregular{|S|^2}$)\",fontsize=16,labelpad=10)\n", "ax1.set_title('silica')\n", "\n", "#titania\n", "lam_res = 600\n", "kr[:,0] = np.pi*dia/lam_res\n", "nkval = get_nk('./materials/tio2.dat', lam_res)\n", "m[:,0] = nkval\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m, theta)\n", "ver = np.abs(S1).transpose()\n", "hor = np.abs(S2).transpose()\n", "ax1 = fig1.add_subplot(2,2,4)\n", "ax1.plot(theta*180/np.pi,hor,'b',ls='dashdot',lw=1,label=\"Parallel Polarization\")\n", "ax1.plot(theta*180/np.pi,ver,'r',ls='dashed',lw=1,label=\"Perpendicular Polarization\")\n", "x_label = [\"0\", r\"$\\mathregular{\\frac{\\pi}{4}}$\", r\"$\\mathregular{\\frac{\\pi}{2}}$\",r\"$\\mathregular{\\frac{3\\pi}{4}}$\",r\"$\\mathregular{\\pi}$\"]\n", "x_tick = [0,45, 90, 135, 180]\n", "ax1.set_xticks(x_tick)\n", "ax1.set_xticklabels(x_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='in')\n", "ax1.set_xlabel(\"ϴ\",fontsize=16)\n", "ax1.set_ylabel(r\"Intensity ($\\mathregular{|S|^2}$)\",fontsize=16,labelpad=10)\n", "ax1.set_title('titania')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "\n", "\n", "plt.tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None)\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:13:15.269606Z", "start_time": "2018-09-18T17:13:11.903825Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr0AAAGQCAYAAACj/titAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXu0LVteFvbttc8+59x77m3opnk/bBWCXC4PQ0x6KCIhhQNbMjSNLQyEADEjIg/lTToQwjCCNIgMxDDiI4pBCKQlJA4kBItAI9HQAhLSfZFgQ/PothtaaG7fe885e+9VO39U/db61Vffb85ZtR57rX3qG2PvVY/5qvn45jd/c9ask6urK8yYMWPGjBkzZsyYcZOxuO4EzJgxY8aMGTNmzJixa8yid8aMGTNmzJgxY8aNxyx6Z8yYMWPGjBkzZtx4zKJ3xowZM2bMmDFjxo3HLHpnzJgxY8aMGTNm3HjMonfGjBkzZsyYMWPGjccsemccPeq6flld11d1XX+sOt9iPFd1XX/GNsPcJuq6/vgujR9w3WmZMWPGo4e6rr+jruvanX9tXdf/emQYo/1MQV3Xn13X9eWu45lxWLh13QmYsR/Udf0dAD6rO10CeAuA/x3AV1VV9W+vK107wq8BeF8AR/Ncj1j5zJgxYwd4VHikrusfA/BHutMLtJz/PwP4b6uqeuG60jXj8DFbeh8t/FO0YvBlAP4CgE8B8D9uEmBd17c3T9Z2UVXVsqqqt1VVdXHdaWFk8mvr5TNjxoxHDlvlkbquT+q6PttO0raK70b7nB8M4GsBfBGAb7rOBM04fMyW3kcL51VVva07/vW6rp8G8Jfqun6sqqr7dV2/N4DXAPjjAO4C+DkAr66q6seBdvocwI8C+GQArwbw7wH4srqunwPwdwB8EoBvBfB7O7+fW1XVz1jkdV1/DIC/AuAPAriPlpy/uKqqX+nufy2AzwDwpV06PhDA6wH851VVvcmF86cBfD2ADwDwMwC+wT9kXdcvA/DLAP5wVVU/0V17ry7MVwB4NwC/AuA1VVX9XfdcH1hV1a+7cC67uL9DZWZd138RwOegJd3nAPxY9zz/JpVfAP6GCg/58vlQAH8NawvHj3bx7XwqcMaMGUeDHI98HYBXAvhdaGfD/jGAr6yq6neAdtofLZ9/Ilq++XAAr6zr+o0AvhnAywG8O4A3AfjGqqq+c0zi6rr+RLQi9d8F8FsAfhjAl02wRN93z/mddV1/XPdcn9/F83IA3wjgDwB4gNbi/UVVVf3GyHhm3CDMlt5HG/fR1oFbdV0/hlZEPQngjwH4/QB+EMA/qev6w8jfN6Mlkw8D8L921xbdtc8D8O8D+A0A/7iu68cBoK7rpwC8DsA/Ryv+PgHt9Ns/qev6rgv7fQH8eQB/Bq04fncAf9du1nX9+wF8D4DXAvgoAH8VrdAO0T3b6zr3fwbAUwC+EMA2psG+DMBHAPhPAHxQlzaGyq8ScPn8MNrByB/p/p4A8EOHaG2fMWPGwWDFI+78v0DLg58N4OMB/HXyY3z+pQB+H4CfRMs3P4LWuPERAP4WgL9X1/V/WJqQuq4/AcD/hpYnPxLAn0Rrkf7+uq5Pxj4Y4T6Asy6e90HLl7+Otj/6jwE8DeD7NoxjxpFjtvQ+ouhE6OcD+Mmqqt7Vje5fBOBTq6qyxf1fV9f1fwTgz6GdOjJ8XVVV/8iFBQAnAL68qqrXddc+E+06q09HazX4CgA/UFXVf+P8fQaA30ZLoiYG7wD4zKqqfrNz8xoA313X9d2qqh6gJeH/u6qqV3fuf6Gu6/cD8G2Jx/10AL8bwAc7S+4vFWRTElVVebH9y3Vdfz6An6nr+v2rqnqLu9fLrxKI8vmzAN4TwMdUVfWOzs2nAXgzgE/DvAxixowZBOYRAKiq6i87J2+u6/rVAL6nruvPqaqq6a6fAPiSqqr+qXP7mwD+X3f+bXVdV2j59UcLk/Q1AP56VVUrvq7r+rPQzrx9FICfLX+6lf8TtNbnz0ArdIH2mZ8F8NlVVZ137j4TwM/Wdf1xNns549HDLHofLXx8txThFK24/BG0ghZop4DeB8A73cu36Nzdp3BeH4T/z+2gqqrfruv659FaEyz8D+7i97gL4EPc+VtN8HZ4C1oCfi8Av9qF9yMUxk8E6TF8DIBn/NKFbaBbvvDqLk3vjvXMye9Cm25DlF+MVPl8ONpneIc5rqrq7XVd/0J3b8aMGTOANI+grutXojVifDBaQ8cCwG20/P9WF86/8IF2s3Zfg9Zq+r6dnzsoF7xA2w+8vK7rLxD3PgTjRO9ndQP/M7TP+v0ALNwPR2scOTfHVVX9P3Vd/053bxa9jyhm0fto4SfRvtl7CeDfVFX10N1bAPh5tNP0DF4G8HxhfH66agHgO0Hrbzv4tVzndO/K+bcwrzAeKT/eugEAqOv6FInlP3VdfxDa5R/fCeAvAXgH2jXGNdrOwKM0v1LlA+hnmJofM2bMuJkIeaSu6/8A7dKwvwLgy9HOtL0cwN9Hn7eW3cyaxzcB+BNoZ9v+FVpe+2a070iUYoH23Qq1Dvht4loK3w/gv0LbZ7zVzVAaIl6c+fIRxix6Hy3cT7z09FMA/lMAz26w0P/lAP5PAKjr+t3RrgX7my78jwTwpqqqNiGdNwL4Q3SNzxk/DeA/q+v6AwJrrz3v+6FdkgEAH42+aGf8AQCPoX0x4j6welFvE6TK540APreu65e65Q3vDeDfQbuuecaMGTOANI98LIB3VFX11Xahrus/VRjuxwH4rqqqvrfzt0DLP28fkbafAvDhW3r59tkMX35OXde33fKGj0Ir0N+4hbhnHClm0TvD8F0Avhjty2dfBeD/A/DeaF84+/mqqnIvYF0B+Ma6rr8ErfXg69BaAr67u//1aKf5/0Fd19+Kdn3Yy9C+yPCtVVWVrrH9FgD/onsD+e+jnar60oyf/wntmuJ/VNf1V6B96/j3AHhpR+D/Gu2asq+t6/qLAby0S29KnP9id/9L67r+LrTr0b6m8Bmm4Lu78L+3rusvRyvI/yraZRTfu8N4Z8yYcXPwCwDes3tH4EfRiuDPG+H3T9R1/X1od6v5ErSGgjGi92sA/HBd19+Clr/fhXZZw6sAfIEZELaAvwHgLwL4jrquvx7t8rNvB/ATtE55xiOGefeGGQCAbirrj6Adif89tKL3f0H75uuvFATRoJ1q+ptdGO8L4I9XVfV8F/7Po92N4QkA/weAZwD8bbTW0neOSOdPo31x4tPQvlTxX6IV6yk/L3TP9ga0bw3/PID/rosb3bTYp6JdN/wvu3tfhfWyBxXmz6HdAeLPdc/yZei/7LdVdJ3BHwXwEO16tNehHVR8kl+3NmPGjBkRqqr6AbQGia9Hy5+fhnaZQwm+GG1f8KNo1wm/BcA/HBn/j6I1pHwE2i0rfw6tIeNdaD8ysRVUVfV2tHz5AWjXJv8AWv7/lG3FMeM4cXJ1NS9vmbEZbF/HqqrmmYMZM2bMmDFjxkFitvTOmDFjxowZM2bMuPE4GMtcXdefh3aa5X3RLjT/onntzYwZM2bsFzMXz5gx46biIJY31HX9qQD+AdoF9T/R/X4OgKeqqvrV60zbjBkzZjwqmLl4xowZNxmHYun9EgDfUVXV3+7Ov7Cu609C+znaV8feZsyYMWPGFjFz8YwZM24srl301nV9G+0Xs3iv0R9G+7b/AK95zWtO0L6V+exuUzdjxoxHAC8C8Otf+ZVfef3TXteImYtnzJhxzdg5F1+76EW7J+ophnv9vR1AFfj5ALSfpJ0xY8aMbeCDsP4wyaOKmYtnzJhx3dgpFx+C6DWwsk99XvVZAHjlKz8UL37xSwC8BMB7AlgCeDPaPbTfBOCfAXg98G+b9lMCv4p2l9OPAfBhAE7+EIAXo/2C7OuBtzatm9/s3N1B+/mEpwCcfgGAT+5Ofhztcrf/q43rhfN2p9mHAO6j3RPjDtrtsJ9F22Xc75JnX0M/Q7tL7J3uF52bX0e76+ub0O5g+KvA219oP4j+bOfkDtodwT/09wG4AC7fBDz88AVedfIUXvttz+DeS5o2jNd1WfELwMO3tt/6/U0Av4V2Z3EL77nu15L/AtrvV9qmiU33SGdov1P5eJeGF3VJf/cuF18E4D3Qbnb74gXa7vB9AHwo2k83PA3gqafQftjnWeAXvxv4IbQfzfytrrRPAdx1+XLL5Zf6MHDT5av9Xq5/n79Y4FW/+RRe+6JncO+yaa9fdPfPu+PGPaw/79xekTcfFZ839Lfskmj3fJIVFu731D3uLcr/0+74LoBbi65AbncXHut+7wK4534fB/AE8PytBV71uqfw2k9+Bvceb9rArKVZ/l2grQz2Z5Xjhe74HO0OwQ86t/f7fq4etkHZbZ/dl/3s5exe5Z0d+3xdumRyfkO4RXDfl8H5Y4/hvb/iK4DZUumxAy7+cQA/k+Dil6PV3KVc/CfRfgzssLj4nb+8wKc/9RRe+4efwb3PatrwJnDxC2jbzO65+BPaVOyQi58/X+BVb3sKr33xM7jXNGtSuCFcfLc773GxFUzAxc/fXeBVP/kUXvtHn8G9J5o24JmL98LFhyB634E2D96Hrr8XMl96efGL7+GlL30R2qb+HmiL7LfQ1rgzrGpJ07SfRLjbeXwRWn49sT39l627F5o1C5107o09bnmP97oLl62/57pwHnTRLjq/L+6On+9+jWitldxD2zDudcmwa7e7+LtK/PB+u3P3kpL10o4czu8DDy8WuDi5wEtedB9Pvrh73ltoa+ZD4P791r+1nQZt5V920VojOMH627tX7teOT7AmAmv4d7HSVHgR2m7vPRYuAsuPVaI76nj7/TaQqy5ybhE+Uvtjor2i++76nasFLi4u8JLlfTy5bNYt9ML9ReeOaP0tS1pEvMz7/nHgzhVOu18mWutjLL/PsBa9txdYE+UJ1uRp+WrXu0Dv3Ory5PZ9PHmnWUdqCbPwfMdl1yy/OR8fdr8P2r+rh+tTc3KOZDb3fq1ucl6m8hriOuf9gtz63xkANuLiuwkuNvJLcbEvkRwX3+rCTXDx87gWLl7c79rXrft48t2bNTEaF98v42LTPzeBi1c83BAP3xAutirU4+Jb6BcOcfGd0y5Pzu7jydtNfyBhCZ65eCe49n16u69J/TSAT6Rbn4jWVJuAZdNl4t6GGBPM1CiPtOedlmxXVkf63EcDNmPM+T0jgc24GFjbjvx5AVb18nJ4XZriCsMdhF9wT52H32UsgDdvFWJbzbSsc8/kZWne7ZJbNsn/PUA++tT8OPBnvQk4BEsvAPw1AN9Z1/Xr0c5TfS7aWaP/Pu+VG22iEXMjvSXcZ0luJOFG6TjbPIj+wQEj13HNDX27OIY60eGIkvqoYAMuLkDWrLMhv+a4pIRr2EQ1Fd7/TeK4Bv0Zol1hJoe9YlvZfejFdu2WXgCoqup7AXwRgK8G8LMAPhbAK6qq+pXyUNjKkEBpqfCikzFWjLElP6Wm7KF2Ka7ORbtEOxUVWxqFtfcmdQrHgJK6c+js5XBEST1oTOdi5sbL4fFVqpGTO1Wgg2scR4KTtyFiA3gDRNIY4a7tMDmbIbJMM09vY0DAYWSs4qVdRGnSDjL/Z+wch2LpRVVV3w7g28f5miByezX9kn4dBi0sEryX2xNsE8PZZ+NVSSziwYHg3WK+RXiUhXRUGNvOE25bTTr6GYePaVwMpJc3iIGuX/in3HmjQ1hvJ1iGN6ico7zyW1ZdAKVNMHK3PSPrgS41K0zLwQ4cFPa91GzEspyjycMt4SAsvZtBjfDd+VXQC09mnglr1nYlvqJWP2EdWQkmNQ7paQtLRGaMQ1RPcoW6o7r7qBHtzYcvUbb0lsD54TdiNklKqv7uoxJm2o/XxDui7d1CWWw3XQe9AcYs3z4q7GugNsLvseb1DRC9Bp7iSkx3KWtvNKW2cj+ByKc0/ILaklw4v+faxtGGaVuRoysnRZhhIDOKsIu8871yso1MR8kb1TMOHZGl17X3rJjNcGtuqZmfhlfHg3AK4bhKThwq4edJcUuKVnXYm3fibrCxCXJid4PnT66MCaI6CB7Zp1FhSw88WNV5w3DkoneJ0Wt5e6QbLGsIFVyh8FU9+JgKWSp8S0fU12D1bZSjBhhvAUpEfBCsNg5Tkpwtvm28vGPuSurryIcY4zyX1GO1Ltx8KEtvsNaW+ZEHw35ZAAe9Ct/76Y5zyig1yB5pnZRO/dIF3sTUxcMrHrYFv81WOUoMQx2m9CNqWl8tiSrMjNSY+wD14/VElghvW1FNGTOm0rDP/D5y0euRIFlGcslCB0+4kUCegn2W7jUN1XrRSnZ3lh+o+zNGIyrr0rw98sHEjOtGJHRL35ug5Q0GtpaWQBkdmuA+hzmCM4uaya4U7lSM6RM25ecbwO8HZe08gMRs04BxXThy0Zuy9Ir1YXY+sC4Id3atF15E6Bg28NQbX97PJjWje47rqlxqRi/EajRPeXioLeMa0pWajY0wdtovGfEYbCHesdEealWZYTA+Noi2zvzYq+yd/yKhKEQ2W4dLOFnB0tSgqDEuVdhqSUN3TSWTJ1lKuo+NwH3bpoHvyloZhFsaHRfflKXiyv+1gSvMlvJ96vhk2xb2feDIRW9EsEKUJkf0JF7V9MvqhML2qmPKKHoimlR8ex5Zh0ZCuVDzCATvgWNy8aYsXDuAGhRNmdo6YkPRIwTmxkusS44ME1KMEq82SIjODXZs8Kpn121gSX8EFf1+6/qGs5ebJHaDNc6jjC2HgJIE7rgulnLxlLA2wXWU3ZGLXiC29ibW6yoBpoKV4Qk/USuMSnTMlFqqhBRx81B2S7UqNzsol+nZjcE66uBFtoNnrwNHSdmHA7pEeBEKLGjXWaS5qjVXt22C+TFjiTUMZt0utdAd1OnEcraoju+ywJ0VF0BfsJOA3+XYs2g7s8EMprse5TutSx6ce0x9i4zDpnLbpPhSfrdoMC1DFNnURMzGo1E4ctHLgreABAHRKIlofaOT0/IFa4fVNFsKmYpr3/8e+NmyuM2hQOcMHfem+izfHmQtIVtHSTwT07GL5G8k2pJLdQoiHOOvANucPU1p9Zn/rwsJsetFrzc89Np+xwnKXZFovewPsIOlBXKgXTJV3IVX3KyWAM6hnxfD7iZqelH4CwR9wiRcDvNkClKDFbs/URBHVvEp7X3bmnMn2EHfPqrvFtiUWw+Fm49c9GbErl+rJAk0IZAHI9mCF+S2jdPezwo9Mlzur7Hm4hkYdf3BIB+X41rBVOtBSbjTb2exaZIjq9CocMcMurxVyvvfVf7PuCHwBogRxoEVSBxbkLLO5XhfJK1Urfp+onAw7le/Sd6jsHKiawrn7KUjH9v+1TSgCnOEei1xtotVhtdGfVPzfM/RXlMyJ+EGiF4mPrb+EnqN7HLt3hMc//YslBSfEsmga3wcYRs1bYO1UmOisajsNzQUsPVFWXSuGyPTcJ3aLxs3O9h2L6EEMYWzzSLdRfWYtfsukBO9bjatEX+RO4hjmHvypyzIat3VWAtakzzVYTUALro/s/g6a3HK8MzBTamv2Y49Z8gpsbDvcp3GyBEA56XqWsZ2wVOodLplYkN/B0BqkTV+E/+7wMF8hngamGiBARkqAuwtWSD4hr5gt06w+biUWFbzTiwQCi0JCkugJdSUgx01hBJCbvzNXmfj8pE7txnTUFrWVqeB/khlG3OkRVPQaRwAb8+YDONG5uSH6HGxYWDNfbAOw8SiF8jejzdW+PiVULI6n2ojHE8BBrTFyx94eQYJ7imrj3YHWlKSgyX+FLHSyYWj3ATWE96hZltdRqo6lFLiEsDZFtKyK2wjn8ZM8h2DXj9ySy8wHPH7awIDoUXrzYCEqlNxZbALCy/5XZbGs0WoJA+MK7xwDegYTHSCKTxConhsVUhmTTTrUIpUYjIJfYSKbAaA4jW9yhzHlt6c6VPG2SEafDEPpdxxOsP4E/DPRgaXyBo5tc1sZ11vBiXWcaVGOQ9LFGsQR0qkjgxqI0RhXnHdUpj47LvCvgXnIRg2jlz02mifrQtEhuEUl3DjybFHWA/cH03FpZLH8fvrCmPWNp2LsHZo4V3F66KKolzyyRJrC45Zf3LWhTHPsenwvzCubXLW1ovK17cxHTZ39CxMtowxxqR9hDNjGzCLLvGj4mJlAeVlT35JgBy8JZZPMDH1llFgyPUpUHihcbJz1xvw29IGs1pfrMPg5jmYhCxMXjHktHuwJnrTwTKHk+vvCohQ3S61QBaPoQ4ZYwnRZU7Oa4lW3wTb6N63iSMXvWppQ9CA2eq4Ilr3y/cHLSSzBsr8jpkPYP9jMHJKbhNEyUstmRt0OquAaHkDxO+UxFwTorHNtsM3jIonEr9jAok6pkLxMHWMd2DFPCOJlOEhYyDoGSAuNYf2BrWKg+kac86AnHYMKeyHt6PmOSWZRet4U0ReMjiOzscmeIpineZlFd21Y9O6F7YHQuJhpw4SbhJukOiNLAwEb0VQU2osDFaNU4Xv3EVIibqJolVaF1iwe+vGBjVX6STFfaEx25P+yjLtLDrbSNiRYJsdHBBUnVx9uiK3UwZnhX42meUrRbSkcJdxzlBgbnyIwewYD4L9+dV56+6yGYpU2VgEF/vwDJEJVXEkpy3gZ6n9Oj8DSy/9XTXDaEvbiXXWW1nOMLCY03U2Enn4RC/JHZfBmPUb7G+EeEtFm/OrospR3Fa5ZExgUf3eEOp5x46BSv1dN45c9LqXJEqm05jUlFtl5V2pymCdmoFV4diRcaICy4IaIZqVsymFz/2GSs4SwpHl4wWw6gi3YX059BaG8TNTo8OMxKuc0kwkgOtTScIzbji4pLFvIo6gCjwCMJFrgtfzZMedzK9LrJcAGB+bQDSuGHA2EPI986siqymVpfPvX6ga0BaLERvkn6P3vKqp+q4pJ4I9TrFpB+7Ebo6HS9QkQ4lmNYhhYqB0cNSchFJOyVFkNIDeBWcVzZKV5nlBQlSeqWBLo9rroGDLOHLRCyQFr5ry6gktYSUwd9Ltg76fFFICt6Q1OqhCWunwZYZ8C7CJ5SBpVfMNuzeYcMsbxgizCDtqYfzW8L6gipDHYqMCyJlDo1448quuO2FQajWIru1TxB4yOR8XzCiQWNPLhTuw6omBMKvEXuVIGDm8e6Wa2FJZWPGKqfwSfWtvly6OrrR5MZizp3O46M8iTk6pzbENaWQjn8oJJZpyG9iYs9SgCdhqvpbo7BJwsUfhRVVnitjeJo58yzJ+eQLoWRY80bLFsQF6hKmstL0tywIrhgrfMMISG9acU3nYemmcIB4ppEvgs+RUXPfnTOSr6NmE4S293pKzTdwQJWN5mPsS9ak/YaQYqiQCczeynMZUv10XV6ngnrEJvKXX/3Z/Nhpiy55xwDmARTNcEsC8DSC5ZjhSlIprlhjuN8Viu9SKpiyYF85BJ3wH43/0m2VKY5ag6CttqwjJ0ssJiGBueMsy1QFEAxBg+ICiH1XblSnnKYyxqzTI8y3fV9VIPlspphT8lkk0ZyfZFq6Dh4/c0rvEmmCtCYh1XmxxtDdqlXj1DdaOV26NxL3wpeRwnOqeD3tiqZvXwVa9EeGIJAHj9iNUej7ittWBf85Vvj9o1/Ax8+8KG+RzLliFqbNRW0miLAikE8UzG6kEqQHeHpmrNKpZ1O4bVjG84HVC2KydLEyNxJTYZYEMOy6wJHN9Zi4aK0KazGyzs+Su4jO+syUOF/GKjQRtZ5O62RpfspL7SJPkTkgNuFMWYlUeZIBSdKO61ya4p5KXo0P2M5lPtkVEG+iEfURd0n0fCicfuehNvbgWLNDvCVsxNcZuelZhIaq9P4YSugo81ZaBDzZq5LsSJJEOAvr9U2P/fB56q7l1dqn5kSPAdRiVB0WbGmRJD4EfA0//liRmhyipykdchW4IUu9XPOhzmxc6SgQzN6Tq6oqXQeTjEBkYOHzmKcFNHAU7WUXtxbs75mAjvbcz9J7HzY7mzKGl1+x6CW+MaLSpfMmNzQ8OqYRtUgGoDM1Kvg3enCpqx4yR9oUjF73n6BHrYKkDhsNpT3T+QwmR4F21HrFHr/cnRTV06W6B2Xy/MIi/oEZtUvA5Y8nq8X1e+A7AL224jtqf7ES18ylRbAvFU00lJorUDESJCE4mQDsp9VpifdkUB9sRHj1SyxtoGZgSl5Gll/8A9Dm/M0TY8olIREtOL0Tgfsknjbtmz/Sg/zxKTys+jboPb9Vd0HmxxXeQl+q6ew5OVKTamUNKHpTjItLIGYlzvBAlH+J6DpO5Y5vkpeq3cjciKSmpMhabhLEvA9KRi14WvJd0XaxZsuPeED2xNnd1jePKsSCdR7VNtUThNvqq8XWPaIv6Erth5H/V6M+MbgNjWvAeM25bxJol7MhikwqY3UV5mAtDWBYiL5vkR27CZMZ1IDI+0Eurqq7ZMgD+/LBSNQOxdtm/7vmUjRwqfnbj00WVL1ln2b2JXuM9t6aXk6iCSsW3vU7bymeZbuvbbNCMqF4gbakcO2bJ3Utp/YNHQWKn5FfJoKIEGWmz97w+8hfZlhhOq5E11pecJ9jVXr1kiTB3PDUffZEtGqYvKCwIN/64cJhun5E3Th1YepnsOa4NwMlU+spnx1UDnLAiNuuH/1LRDcWmZM3+2LIzOiHc49qx6kVTvQHX56Z/O0qCGhRN7UNvcLU5Upild4k+V3b8bOtaoyUFF2grt+dnfpGtJ3iJ81OjbyV+gdiS4MGCjE5XwXVxrOq/PQP6z8RJ4WwordfcZFNC+KoBTjjhPVxm23WS/P01zmNVDt5tIZi6+J6yoLMb9qu4aPCyuLiWFGlcOaIXJfmacheRZmn8wS0VrCquHDY1PlwXhx+5pdfv3hBslcONzJPsObCaGvPMY27NjbmTVgxCblgDjO7prdFxYUnr6tS5mwTYIsF6mhtMb6zgSdBP9z3EcBpz2zhiZTTGOnHFTK8GPKkAfZ3PzUhwIoI6XpL1qQ4oEXQSR1zkRw7xMQp/rtQeGyHY4hsJ2BX3OoMHKx+IuFSb8PzEBCZUQch7XTirOqvE+0XvnTYZLTCMOodJnXgvH/m6Q8EgQPrz11Jhcrm4eqKiimiOEVGZCid3PUedG0EN6qaQWOCz2YJtAAAgAElEQVRn23yoJkX2Ee82ceSiN3pxQixt8KXgv+uudmCQo9NgzbAagvKIFoiJInU/UTrWX8hGtysRmQA/+ioJduItPX7D9n3PbRwRUqReVO5cB1llRvWkN2rJRXq4OLLkHjmi5Q3B19jYNGeDYh4Is7FCxilm6tRfjm/V9WV8Kwn/PE7Ej7FEboJwRmiQjyL/OCE5kx4PMpSSZzD3Jx48GoeXQD3SNrrGpO4vIe2xiSipGPSwm9SlMeK/xLYXHV8Hjlz0LtF7maFnge2usSg1pbi6fhm/OOGH5dKKEewOATrOXVONwa4l5rP944TTSRMQVQqfbWy08fcNKwuI/8KSWT7oBY9J2FXr2VOr5MmFKdGHRVxiZfHXonJQhap6aNGbl3YyHHxptR1TvWcBvGt0nxFecSO92KY41uqM2rJMre+F/QYzekpY218UP/uDu8bnSDSHhj7M4g3dHe9dXfTH/crw7ZGrs+qLbGGHLsU8rYu261FfwoMKBG45TvYXiV0XLq/njZLlk8ZWSE5GhIgic/m/k24iFWjUAWfCyAWZQ8r4si3sUwgfueh9gKEYNQHsRrBAv7J4Uo2sEGyRuGowIHO/LMLi8HH5axDuRkCtNfLE2bshrCK5KKOKUJpUfuQVSXGeW/bx5vMYpvnQcF2j1Vy8vUGPdxR1WnZPsVlEqKkHXvYPcwJ+m8W8STkceHU7MvjlDf74OeCy6Ytbz6s2EHbiMC14AfkOhxKxkchOFTzfI8ErLq/S1qNdP7jvjj0NKq2N4JrHKeIPUIxf7x9Yyj1SClKJWjVgMFyRX9VfuvBSXajyBnKX63p9eeW4oNTdTpAjuREkmCriTS3DY5vWpnFOxZGLXhK4/GfDRdVS7I+3uoncray9QlADw9rEwlOVLo+YC2uAMEDEadlSrVLcx/0MX1/6RHJe7uprbClcy9BdYywBqOoxcF/ScUWRRGWRq1dBnmXTmolqDAr1+MbxzEjBC10SpLwfdyRG+WMOzI9w58z17J55Vakgjl+JN7hrARr0Pzi3ukhLG/ixWBtuQoWjti7rtfXLdQLYjT9WecfuVDy5sDwSGcBRbtpt5Ph3DEcUld3YPlnV2dLEBJejIoS4p9xMQaq7uS4cuejllyeYdDEsQTXcVsKsIbfnPj4Xfo4QFJn6dAHZGmCFxC/PKmNpr3PYxhCOoAbl/Hi9PoTFri8mZc1hpMhYJS6HPQ8tdxFdts9RDtjhFdKDPe+H62pG8EZQySrlf3UcYRa114GHGPJxd+53y+H1/EZinhPU8gaARvhieQOLV3/OnB9Bje6b8HTQvay8e+t1Z+3lLoe7nSh6QyRmR133Aa7egBWWcnMbtX2QO88lEUFxP6ncN+sJVCVuVdFxF56jq7HWyFTc23G8gZ8Jfrf1jKVuc2PHkvHTNnHkW5Zdom3a/sU1EqT2mxK3vsGrUf+q5ZCw5iFernQNW1JC52gF8cLHlxpJZ5KVGwEtyQ2TvzznwYN1QP7Ftm1gx2J2Gw2yVJNzHhdNW6rAeYCVMklEQ//SYf9yPbGyTZQ2qbFhzdg2eMmBW88rhE2Pd/2LxbwEQglZNavneVpZyZjzgfX+j5Hgo3ij+sNBrLLDvxNyobshOD+FFL5CtMwhRNg+xS5EOX9GVCX9HHcMIxtiKt93bUks5t9UACVuPPFHyjD3UKRFttm9+mRwVJGbHPZsf1rhyEXvOVqTlVkVzALgtsnhyuJH/WoqjQm6Z+klS7JiKfN/6o5VQ1fsl6ilbO01pxegRhnFV4iSBq4G6dHf1QVw4sn/If2WMvyucKBKyJKV2jdyiXZ7x9U13+vy8FnVv0gop8wrmR6aq7OKOhVsdD6G79X5jF3jBbS10BsGngOuzvtC1rd5E7xmDV2iv7bX3Bn59RRlsE8v/5k/v8G5Xcv13AMLc/+20tSrII3jzrB6ft6cQll6IxsKYyMh5iO9JZaHKLFqJGPlcYp1vvp8Un0agmPV5y61oZiTVULbKuoof3kWdUHuTumct9UtTghjCtGxoS4T5hSBGnUNfC8qiwPtVgEcveh9iHbbbSPZuxiIUm6I3prgLQyqEQJ9kcwbrjPz5RjLri2QbjWFNcYsvYO47XxLgjKleThq1SZPLc9tL85NP06Ra3Vjw8w94IbgoHKCLCLdJYbWeJnMSHVG9UF1UMryxe4TD5JyUlpcqetjRO0sgPeBB2hJjZY4KKWn+Ng+5KBeZrPKD/e7Usgd3zOX8wDQ9wPAWsWo9Hi4MFig+pQM6JaF/IP+o7HRwEeVqq+rmb3g3qhPEXur+Vj1YuUS8WWKO6IHDMRa1K0qwws/RqklmKuFXdtocJGKuFS15wZnhWGlos11eSUyIhUuH1+3ID7yNb20QXnqa2xAv3XwnjEN/XEr6ole2gc4Itic8BzZe6uPUwy4agMrbwqq0i7pWGXb0m56S0/0dvaYRBwYdp007jc4y66iuhb1pLLyBGFwWMG9nEWhpJg3qb5j/JUIjBljYOqOrLD8NQYmCH/ff6CCRWivfhdsWbYM/iDO1aNEoi3htFeXaFcKfl+ak7BJvR+1zGEgosSsJSNS5+xHcVCkfJRixfCFQJU/Y0VYlOxtIBnWWCvuVLc+roQ/7sNLROk2jQupMdU+hfCRi15jFRajS6yIEBg2Lj/U5v1jluTOWx3Uml7VutQ5ly7XrKglLzSheQNJw+Fyh7GlGpUbvIf9jHViXFxTLb1TEj7RzVTu2ScGaYw67ahO+PrCg7fIn+9J3EPnOu/rFpv7JNdHC89DvlTMa/mZXxsMv9LI1uFBoSXW9Ko/NmZ4RMLY3+9+U0bhwTW/PeOD/jt6bIxWTZXbh+oDRll21aB3CciXvlODgkhBRsYlIN6qDIljDPOEo1FuPZSoKxXLOb0ahrPJ6CVFjiOVPu9zHDgLk5BzV5CEZBjXaWw48uUNl1iv6X3grgUvswF9sauIlUeg3iKh1vRyA+dKzy2P10AV1pLoM/GDypOoTVEFnDryidq3b7srQc7rqMduW7ZE+YLjyP+WsM0Gy8nKPWKD/sxscQTRaAVIr5koHbglos5ZgNVxCcYS+owd4qpB/yW2TvEZd0YClNf6XtB1VpmryuQMHN6M2pA7VpS+MkaNjU23mYbmo17VP+O50/bXPyJ3G4XNaZVc9VGKIoR9zeXwmb0b+7NlecbFuf7MP+QtCp/zt1kfqt+oq2QDdEpTM/y90sGDZYPFt5XlEBZoiWdVgZQblNerMYiaUgqbCult48hF7wO0NcXW8to1sWE5sK4kvHsAE68dA32xxhuvcwn6lmrr0AZkTW4tXYUwwrMkrpa7Kau2C3vbFd8LL8+Lvi9btUnehsh/oGJXQ75SpbUFlJCLEoClA3cmWc5/+zu1zD9DP3DVeac6OL6vTCYZU0iJZaW06Es7rjH3ZmwZS0B+nMJbb1Nk8QBtReety2TvSrtERLN1bLhQM0tKjIPCQXudTqXYWjWPBuvu6WG8Gxv7i3SMoUQXpdb9DiNN7DkfTTH6xCiLb+4hAhJUX2FTzksEV87Kq6rBaXAcidzJSCUksvKmMKIPzdB2UTJUebC7UjtWFO4uceSi9xzrF9nEul5u4PaX272B/8zt5Tlw67k2Dt5MkEswEhX2e4Y+yUK4J/Co0l5kG4jeEUO8MY2YK6c/Z6OMz7reiZ/99Ov3tv7GANL5OVER7VpIWVaYEQVYP8boqUxl8SphM2WN4R4fw+sT+rle0lJJityxmwizAN4xHtg/93d5PpzV4RGx54Qz4dZz2eqclrGxyFXC15/7raEUcXmISqfqG29Es9rWvRPyqqthjT220zcDiP1No1Axa+nRYEjwamst1cB8mGbp5T/0j8d0pzzY4OIrOebkql0ccmLX4k3u6DC2cEsGD5wI/ytucx6oPI78ThGkJXl+HThy0WtMaWIXGLzcAOgGxoJVKTdv/TUyvuWsyBFRqtqVc2PgkTTiBqcMyOkb0xElXz0q66xVPvrtiXZp5S1FJv6pyRvDVZuA+59TznzvkOF7Ft4qosR/cD1KQiqYCIdKmjMElmg/N3yLtoxUOzfAHXslCAxn3QBR+LRdmeJxoM/l3hpsSH17nZXXMh6cqce7ANY7UgTaXzW1Us4Z+6GKHnqCSuzeUGpG5ciUyTtquIIklKhVQUSDXxXOphx0MOA+PaMpUtmfsntwvSzNr7FurxNHLnqNMf2a3iXC74l7AjwXv8xeyv1jNKWmCNbHB3Hu10Yp96L2LOgXXXJWS6q4pvJzZMD8VbJmLGVY8TOaPcs6W3rPOdQRuO7Wk8FUQzNbHPieWffP3LUzdmS/fMz1RE1RqgFdFE4XVvRhihFVfHW9tM8tub8DY/8MhUs4o0D355WeWsvvB8HOKtpbC2D1syeSxGeOlRk14nMP5R50LeFlQU57oveFzsHD4ft8ysAciQ3bnUF9mXM0Bo0x+Iyz3fcf8PAm5Uih+gdgYcv9kXtgv7RBDQhS3Ws0GFG0ppILkPHA/SoUdTtcj9hzpDz99nxRuPwgalSQiWpXCJIi7/lr+0zjke/eID55qb6YFglYzz6Kgbx6s+DRLW8oERQpslUkoXAqD1fR9qypHG6ATcgzRdL8a/3aFVt5fcfGI9hNsGcVM2Z0OxURyfM9wG1bZjf5OGeqgnDj67Hq6JZ9p+o4guLvUqjHKMWBj5WOE7Z21/iRtyxgYvD1KhoMRyoHgLT08q48/vo5+u0BiOs0c3P3pwZkvi365F6ie5YXgOWF3r3BZ0MpFuK45OXXQWJXz3m5fhHQ3Kj+yoPzjzMBdK64heoD62RgWFw+CMWBEcWpMBi5Mtgpz0cPpDIlQmH/n5IhKXd2jfv4VFJyYV0Xjlv0XjXos+US4TY2viTUPBN37p44/S8etF8ZYkuCQSk/j016a8Lq/TqPkloZ4NT9Kajg1KCeG0djN9jiu031UaqyJuC6RBL3UTk3K6iegKHqCHdQkT8E96CrPCdpH/l5aER747Ea4TbofSWNv8bAAzCecUsZIiye1B69iozUwE3Ve25wagApLinKPcf6efyrC9ELbFF3kVvGwL8hVL9jeRm1ae7HovwDueEHY3B/GUSbKYIkomSmuCfSnWPCL0pUCbaoEyzq6LlyejmV7FT3UhrWpLzcAMctepdoBehgf8jLdn1ZNNJkAZYSwEbIqxUU7q0ETwKRSACGtYoZTrVyh+glhd7jcVi9TmJ74KQyKUX9Ws+a8zxay1Dp8oZtPsM1Kp8UEXP1yZEG99nSgRqMXdG5GrwpfwPh0b+vqn9phzO2Q4vCj8KYxe4eYMsbVrvcOEuvErS87MFm0vwXG5nLVhVILG/guswktBRhKjcRj2LYTPiaf03hIdDy3PPrbDCzTGTxLUXqi2xZDPLzcp14zrsIEelzHMwXqnzQ/yBFRDHqERR9KV5MafoUIl1f7KlE+Y0peO58IyW71HWVo4zyynchpTJC3c9p/Ovi5eMWvaspq+ALPapyNc6feskiIk4jZxPTkbBU6s/i9b8IzhMw8eu3UxlYesfU1A3BAkzpqFUj8nnuO8Kx6YysEXztSDClOigS71V3JVpLwR0aQzFiJo1RM9wkGRHGGFNmbBGXWHMrHqx5MtpOzP+p9b6REWDA98GLbHxNvciWGoX54yZes85eevW7ex4b3/suRz1aKgrmfmDDtb1+ABH1FypPU+pS5S+rKI5/ObwUia5SKktZE1W4UwSdur4635SENlXnI71vC6l4SsYC+8Jxv8jW21HhAdrHcXvoRmKW3yqIRK76e0BhKYELitu3MFuo7jf1bpBfwB48vr1TcOXD4rQ0m7VD1Qb9dlqKD30WngO4x+v2Nt3BYRfqplSRTQhyDBro0ahVH77W8AXbDi/Vayi25xGLd+cjEvkTidwcIisO3+P+M/JfGt+exoWPDrxwvTrv79LilzgwWSh+9cRxG0GlcpZeJa4DqyIgjiOxTG3G1x1uSl7MokvZ/WZ9/BBxV5Org9zm+aU2XucbimEWpzaA4LYdEZDdj15ki/hDubNjDPOS27miKVVM7Cbyq2Dcao+uuHYj5EY4KmHqwXLhBw8YdW1RfuTGg9FgIRV+ajCyTx4+btFrU2qnDXDbRG/wWUpg3aCVZcEzkn+JwojYfUd9QLIenjRUDTFRoq7br6gdau2WPcoS7kuPLPQLGk3UuHknKwvKyEGRdzR+6HVqL6Cf38AwH1NIPVNEHlPC2jFKovZurEotoMllRdRRR6PaAgfiI1XnQgxHn7xU2gLiV7kfg7HEPWMHYC7lGR3PrVb3PAc/EOGo+tkAA0uvUpNMTGYh8MYFVQFZvHWIBl18z+77R+Lug629rAOj+pyali0WaNwo1fIQnxDevcFvbRApUxWWXafOwn9MT4ldtuXkqJ8FNEefAgvfnSBSisqawefRoE74UVVcFUPkViVF2TxUfS3h9X2KXMZxL28w4lwCPROivWjmWYg764h9/N9SuOc1wOwW0DUKdE0RRlATopcVuM6nwtgmVHKZoHy/1gDD/OMXXHaVSMMWFFDK+jAmKZv6Y/KS7iJiVPmgFCm3n8KHT+nkKPqxuE7CnBHAr+m1tfreyKA6a2WAiN6zGETW/fGCUMXhaoRu8O48yB9zHYtcbmoXaK276oN0qssA0vVa9QHKAsxYDg7oAdR2ZSniicif79t1lUlYX0sNIlTSfbBcpdiND189fsidGaiuZTInXYlrYwOjTIy+bFcSRPQsGyapKByVFbvAcVt6PUE+5iy9Swz33QX6tZzXlSpTJU+7+e2A1XSaxQG6rqxqPk6I+3ZdMBl/EKdXUa8wqTWnLAXRVLv9qn7FisCE79UFcOLz0VuArht7TENpVMraoAwCPtwlWsI7Ke1J7Dxaq8Lu/LGr17lOKkqvPx4rhqNOLjo+hGp2oxEtBVN7dVm7N3H8EGsrrH+JLRRiYj2vMlR4HrcK5q29qm5zZXTnilZVVMD6vbwl2vfZmPK4y4jqv2rvfm3vqC+xcftdol17zflnbv2evEsXUYpffGcQEUP3q/bm9c45OTlxyfcjwcvwj8bXgbKvssnEWCClJKQSUtqXRzoicFaCMbys3KqygLi2b26+GaL3AYAnz4ET9zZvRILe+sCN01t+L9wvk7giTWBYilEtiMggEsfQH6eQFoOluLHsR6PCBdbrw0q2LfN7xvuofLZ5S+8FuhUotnuDMnXkELFThKjFRtZO98svrmzaMDnKFEFEBHxKv2qf+BU5q9GI6kVUIhRJ5xgMwzzidJX4UU1nrCCecQ1QFluv8hr0FZ8nCvue+in5NwwGXZfri2xdZmOEF9i3sW44fo2QUlqkTLnZsL2CV2tdoKU5YK37vdVXrSiIEK3fnQylJH2CUqLWJ4YHB8w35o8bc+eGu1/WiTw44CQrv/7xUscM5ldldLDkb7zWN6W8I40QPXT04CJ4dZu7hFxQuYHaGH1+XTju5Q02pWaNNvq6jGpR0XchI5Nliq1SNUeJY39/RI8eDQJ7QZew6AjkLIvAMDrOzpVBndfw+Y5t6pcybgByZJwSyB6NdxANKszRlXCneqFUB9bF5dOYGvfxtZwQjpoNP4o6TzWrG1JtDgssNpWg8h21r2MslLnOSXTCN6WMuIdW9TgSEMTpkRbkxzU3THPRao1UXfSUqDpq9aEK5XcQR6Q2I3csvoD+w6iHUn2iuxa9BxCJ2JJuLVVt+BES9qUB1NgoWz3HYFNCIv8N0s+oijXXB6nfsUmLJJClaV84fkvvOdoXw84BnJ332YdbDxPtOZ2zAIiWNyjyBl0Hhi3Vjs3S4NNl90VPH63dUlyUJKNEmGOwRH+JBfcbFq0fj6x2cHgewB3ytI2h18gBRFZRTYje/24alrI2LBFnla9CiwY44ZupXiOnTFlABHVLdQ58PkbEchjqEUryu6QjnLEhLjEc1HrFp1428/wNtJXeW2sVlujW8HTL2dh6zPF4Xvev5av2z+kjdRBpOaBPZ0B/QouzIqUTGWr5gu8+Rm9jptoxfwHPEua/bW75562R3BFF1slgRMzdZipPOArudyJdjuCePx/zCeJRmDryViOB0rhEuGO7RSVfUs1RJTfK8+sQuYzjtvSqJQi5VsEKLXqZjYkzioNbLpCvBXDuRva8/oUG1uq9dOy4R2cdxdlu536lSZiPB4xdJ29s+KxFuQr2AlZ1OTXA4oD4nkhsav/SUl7fZjU48Op0c+F5x7dtfrcixa1+LRRzMscFYLBdmepd7ZiXvKl0+3NDMwzOn0fNy7/X53du89kQPV60vCy17AyZe4OBq7/GohTO3RLDh2UO8fdYwYq+8KqJu2ZgWEQJPTdILh+nBG/ueg4qPSEfSpKGTrRBlZl3O4LsSgwSm0A9dml5lZbvtnDcll7bqnGBNasA8ZDaE230ecyIkL2ld4Fhq1XDy4BAe+uhItMBgfdmNOeDETKL90TQudGsLbHzWCbiVx2A9XsPAJw33breF7oArLw2GfYpxbRtdhuRlG258/lsfk6De3btzN3rrevljsnuqU4uag8+IVS3uYmpKq2i8/fHYFfEPWMD8O4NKUOBNzgYt1rFVbwJ8gdg9Uaxsux6gasszGofazu3NJAak1zrvBpP2r0LtDS3RP8lNl77Wwq25uYEcIhIrbuEmXBbzRZZXkbblalweXRubpZa8EZ8oc6521X0BHGdk8v8qvbnVVwbYRXHFELyCYjCUA/MeY00dXsvPNaJxoycBHOreDin+Tme68Bxi14mVs88SomxP/8ZXG81XtKvMZYXvcCwgfsaodLh/ZyRO7VmQYBN84Ov+CrlmallpY2a2yNvNxxlm/9bvczm06oYnWGksCm2oJByGltxk/JXkhQ/TuJqYtOcXvCesUeOLDKn+GvcUSmB0F0rIUoe9+V4ne8pd6UDh1z4103ANwbc4KN3JuzPf6JMrZUCMmt5LtfHkbj1cXCdPqVzYFiZqd4rraEeDYiXNyjxFsFWEyzonN3w9aIlDp6wac31imo5zzzhMJTyFJyjttNydBIKXU6+ij7ioui6Hed2brBzf3w28DECqiNgBZ5ynwhTWZpHeM92CxxeLuyS/mHfOO7lDVYanmS98qLReu8aWwS4kZrbcwxJvMGwdfKxEgtcW/ieqlWLoYXXPz5XyBKRq+DJk5ccR2BdHWW19T/nQH++b5NWEPndYsuaKrY2iS+X/JywXJUD10PFZt6zqnv8sEEYSsjmqmHUcfl7OVEQhTcL2WuAfYbYCk299NuIP+ZXfpEtFFjupeWI7+Gu8zILrqiKv0kI+uBUknydN8M3f40tEnc5RMsdRkGVBXNEh8YnLMoriPtK/BK3cLDqNzP+kNeAYdJ81LkuYypvZMtvTEGzP5X30WggEX70jKkklfRHUZg5Yaya6b5w3JZe2wzRb3VjI1HPMtyCvOj1U+y87MFesuDlDXdFeLlK6Cs+D80bd97Qbwe/lteL0sEjstjZASxYniX0fR2PLS7QFtfVC8DJGdb56lGqtEvY/hCHmAlwVUm9UNFAGwZkcUdEGTEam68Go6r1PfsuAKeDn8X/KZRU1ZEcP3AzC+EdYwktYNkgYe48OQDOvNhBTaFbPF70soXXSIiFnRJgqqIutD+mVGVDgQuSLb2eB1Vb4EflrLBfZdn1fkIKVY1Hid8l8c4S/XVTUaNTlg7R8FVxqAFA1KVGY/do4O3PS8G866uFHav4B4HIG3Q9Gq2XJlpUpkiSMPWrPFdJKU2GspEwDoGHj1v0+uH0A7SN0wQwW6+YobzlVrlhFcfC9wzDklYjYW/VAIav43uyHdk6WduvLvKzb4CUvlR6yv/5FSM++x574Bzta6uyAxa+uaT5Ksbren0x+88UDz5SwUzHg0HvLuq4AuXKYiD1XEy2U8g1Oo+OZ+wBfk2v+vN86nmSRW/JYtXGInwwfDssVX+5sQC6TfhzEmzAsJ5x1MBwTS9nAwfvtw1W+/JGYvY0c7+XXpUn/PW8Zu10YRziBa9f2seRqA7BuVOfHFYiN+q2uVvlYvXPqspKcQ3v3FCKrYs3nwCuYCVk1rmJKD2HFG+zWFblkYtLXecy2pcgPu7lDUxo0foxNQRRQ03VaP2m5565vFiOhpmqZihi9b8JqG1qBpWJCV86WqOkoUdWRdU2OXpv1LFsvLL5vl3X8hFksa8klI5FoqJTVSqKQ9Z/ZapSiUtZKLr7OUvCFJRUiUOwFswgpMSm4sglsPQjYt65AchUos7Sq3gf6Ndvz7kscOHO+XncMbdbJc5Y9Pq1vGzsjh6tpEPm2b7RdgPPAdwfLYM+pbs3yEd+cC5r5/8KumgjAQxyEwXP4ZUKXnV959yiIihJnM9nrtu5cKDzREGVSy6JqTBz5XIdOAhLb13X3wLgCwG8Ae13c14G4C9UVfV3kh69pdbv96iEn6soVxfAiZ96M+swVyoLm6286oU5jgsUlt2LFKT/3KOoYSXrelf5IJTI2MZswvrCnfv+Re3g4H/5BWr/LuAZgLsPgRNj7qlDL27wm7amoFVGwZaKu10QqT3uAsPZRyur8MtsgK5nqvNikhVI5UPEz8q96kejaKMOLdWncIc7i+chJnOxfSRNWXl93XPKbwlgcQGc+Ep7hnj+vqd46ENEKcPFEi0B+f3B/U4RvmLw8oYuHEXv5sWv1DI3D9BfGaeWHTNSX8ecumNDbwDsf9UAxb0VbVl0ag9oeWP+FyIs71lwDichJ3b5fkRXyn+J4PX3eecG7z+V55Y92ZslZDMm0ZE/xJS9pPtAXB836UqjeDmN/t4+hfBBWHqrqvpiAO+squqjAbwCwDNZkgXWU2o82veKS5RqA+c+9YbxktyohVm+BnFDj2oT/yFw2+GkKyVe2wWsearnPXjuCPxlnxJiZV7z1/x1NpL7cUPvTdN91kTOl2tUP6kiKuVAdreqVqoHYYeR5cYfB2JCCdKoH/RQ1pV9kt6MGJO52AvaSICSMURggK4AACAASURBVMAuX3WGiIFITsXlLb2puux/VU+vDBNc7x0acuKD885tN81oLW+qPZdsJen7gmJw4r1xp7tne+j2oBKt+tdAtXqe50FwTgjzNZXXEO75ke16qmtWfsZeK8JYjyXuOzcpgclQeTw1KarJbltMbwsHYemdDP/yGq/P5S/MuFa1BHDqCRYYkp8Pjy29/lvxEYspMgaGL2gw2WZqHmvDwYjOLC6iduWINno5IgJnncpCG4/4LLzd/W207YvHlJa0Z6FbmkRLFi/95ndI1HuPS1CeLunGEu0c4wnSgzJVb6NeBcMOTGWtCmaM2M11VIdKsI8MPO/wC2yBVdFuGZWeXXR7w9qLrrkIr87766dYTRn52C/QbyRKHYnBnfUZqTps1/wOmDadr+wkHA7DW3mjXXW88C22Avu88WsuuuUl3ORXX3e0i1GHEA1yln0nila4D1PuIqjBh39UIA6Du+Rt2F0aAKcpZciR+182M6tMEXVzEKaAqruRu8go4cOIpEoUfkmfsK8u+fhFr7GMzSfZdUVe3e8FgNt+LZnf/cE11qsGODE3D+jPqw4VD9CvpHDXrZV5d17ViB7eE5q3xg6cMuk36a9mTUWD4QyhF7v+2Ft7bcONM7SbYPSI2puwo0j5/rbUzjUoJI6SDSlqs3Tv1+oB61rzd9V0U8c8GrFWH5kvmNFEvbSXUnIiNurkcx1RhMi6UxrGvgn2kYE3ad5Gn0/9dJTjWL9UyjTpbSYTxqpCXfaFbUoUcHjWSM7ouuLv7poa2Png/Pt4QMtxJ5QMf1+h5KW0kvsMGafnBWFd9/xyau6iHTUsEpH3Vw1wteg74WPRRae6bymImTv9c4yB4lu+FmVBGFeObCyzo8DGkCLias+yxI4jQVo66FAi2d/n4+vm3kMUvZdoaTOL519Y4M7JolVPZ2hZxu/o8AJalXWO9T6SC+BdC6BpANzv7i+EOwDNog3yxL4r/3wXpjHabaxr0AP057RMXPjOAOjvfXKFteXNLCX33bHdWwDPYb3n4330X5C4D+Bdi7bVPPdwsbZGX7VRXi3WSTe/5t8e25J4SdFbBb1aB7fCskveVef31GXhwy6+RZdNzzr/ZgU5AXC2gPv0j4uocX9Lum/wLGh+Ltf+nuvY9rmrRf8tCh/WCVZ5vHqozrlfpmiN2xu0+EX0yNARkX1E1AZ+c9s2J7HOyMrvLtqqdt4dL7Au0xO/RhHAc8sFcAt47nLRBmIP6vPEVwLzSxWgWazjsPcSo+WcfiWRBWfvLS1d9Moaxnqd9Qif2zFf43t2frE4iBVeh4pyLn64wJ37i5ZggDX3WuUA+uLqCnh20e/r7wJ4DB0dGCf4dm3Gh2cBPNYADxbA72DI896C6Rut3TOT6TnWHP3AuWm68BxfPNs9mnGo58tbWH9v57yrTw+735So8PA2jyt3vnBZ4LnWJmvskU67a2dd+qx7sm6xgcsLe97nAbyr++0s5hddX3Ha+b0NYHElEsK7OBhHwP0u2su/0+XFs4sFbmPIAb5apAz2cG4tD1W75zYPum9gQ5L98npqMyIY1xqlnqEteyuHs+7RF9anrTIeg37tuWXXN10u+gRoMA62mQyrlxaOPYzF05WR79f9seJmXobv85s39FADENW/lfCy6gMbAFd74uJDFL1vA/B4Xdd/uaqqr045fNX3PYWLi4uUkyF+jzt+c/fHeI/uz2OZcL9LqLQQ/pU7fsVPP92/+eLub0s4wbDSPN/9bQXWArcWIPCKyy5PbnV/d7YX9rHiFZdP98WuguXXY3tI0DXh7OwMv/e6E3G4KOfi143g4lsAPrQwBRcA3t79/VShnwi/1f2NwQmADx4f1Ruffjrv6DrwAMAbu78fonvvBuAjdxf1nz7UPNkHlpAd5aC/LsUtAE90fxl9cCw4OzvDh+8hnoMRvVVVvbT7vUQhzbz2Fc/gJffut0OsF6OtAI9jPSx7Fi3JPQvg1wH8EoCfAn7rBeAlZwA+HsCHoM2FdwL47c7dW9rjFzoOf/wM7TvM79+5f38AT2Itnmwk5i3M6NLSYL1ho8GG0LfRDh3vYP2q7+8AeCtakn8zgHcAeBvwzovW2vss2sH5cwBej1bwfiKAj1gs8IVPP40f/Kg34In3boDfQEtsbwOat7TB/I77ewFro/VzWFsv7PpDtO3zEmtDgP+6kH+UO92j3umK4Mnu3Irj3ej4cQDv1f3dveMcmKnH58ntrnx47o+H+34BXVcez10u8IrnnsYPLt6AJ5pmXUbmTg11u/tN07fo+sF2yiIxxdKbmu6JLBA2O7vAeqLD/92x64suw8/a3+fuLPCKJ57GD+INeOKs0XN5ZhGyGQPxeamLZm0c87v6mVPz5i28JRYdzj9/DeRW5ae3OADDPB5Yeh97DPiUT8GMNSZx8cufwUve737blu+iJY1fQ8tDlukP0ZLXLwJXv9TSrK/7xhl3jVBeBOCl3d8HoeXelwH4CLTk8S4A/xLAr6IN7Fms+dcqo50/i7aPeDesuaVrEzhDyzvGNZed+18D8AyAXwLedNFG8Ra0XPqCi+a0Sw4A/Mpigdc//TRe9oY34H7TPp1foqzW5ILueQvjar0z1m1etXPj31Uedo+64l4j3/cD8LsBfGCXj+/TPdA/BPDTwAtvWVutzap5B90HhSwB/CDetNc17KtmTcnvXCzwKU8/je96wxvwWNPImR8/y+MnmSLrIqC51f/mpuYNvmvhPZIt7zn/jXNvufM7AO4BWPhO0erYY93Nrn977s4Cr3jT0/jBj34DnniiWZvqgbU530jUOmSryw/QdtjWMT/fnl9dtJeNj3k2V22lnSuHKVZeYMjTJf3f5Z64+GBE7xTcO23wJJr1dIsJSZsGMEuVzfF00w33G+BJm2P3jddPpV2s18I+8bDb4uwS6ynxU6xz78T5tVZixzbnZFM+ntFuoZ9Ge4Zb6DeCBrhs+jPPNp2Czvnj3fETJw2eXDS9dC2bVthaO3qI3ixjr3Jaci7RX+Bvj8ybeZtfv1LDrxiwbLKp+RN3/gTaWcrekgXvObUZpdq7zU/DWZlYnqiFzVcYTDvZ35JErxdpXrQpco6OgSFJ2LUUeKoNWOenjQs8EdvfPQBnTbc8x+bhukifuOryxOqpJcjywvcYxoDd31X3ISybGfYf2LP12nZv2R1bNDZ15uuOz6dz517dB3qPsaqffOyv2TSxT8vqfpPL/RkluHfa4MnTps9p1q49GXRYNm3/b2V5ivb8cQD3jGdPnd9bWBsJTOXZ4gvPl0ZU1oP76WBf8ECfkLzK8W2i44O7XXrNqRelJ875Src0Dc6bpjdA9e03JXiBfnKMQ1n0WlZ48evtBo93v08AuOfzwiu5Oy4flusX17yT2+he/D7r8tzm9w08l038aSL6XtPgTpcnDdarAy3osbzK22basf16ccOtPHohMBK9t7HOf8W3lvf34NZA+yVh3K91kT5xq+uvWYl5LXKKfl/l6/Pl2u2yWS8xfIj1sdUf42xfhy0fLd+NJy/QX4mpymGBIed6vvWrO06cW2sjS3cPaNvMPnAQoreua14u2kNVVSfyhg1dgLWis9bDuzdgfdygqyDmx4Sya7RXTT/o2zbSMuuXtVSs/aygWiucG894lLbcMNUTIXtfJZZNZUE4Kfh1o9FbwSrpbKmzonjQhWmiSCZr1P476OfREmGeHQr8M0dJ9ddVNQHW5KI2AvHaYomuivp20JBjTmDUy1BdWmIYrLLANOIeR5caGDDYvzpOXYvCmtFiMhdzveEF7+jfM17wg8gziDJJkY8agZaMPnn3BlWpyC/TC6eTKd4GgH5NqBdXhpT4UhZf5v8UBo/H5SDyyDuhcUrcoKjhmn0h1a5VP6GSlCpKiOPe8yaS7MWaLxseF20EX9c4Ycotd+qlGpDCVfnEUsS75aCiuq3KxruJzlW74UfcJxcfhOg1Iq3regHgJwH8SlVVfyrr0W8dxp8VVq2pg52eJlqVb6AXAG77ryv4UvcthFs5X/fnxoTeKuzvC0TWgZ4eidIwAps0eiYvnkbhl5wAlLH4ssDNDjB27Dk220uEcI6IrTqZJcJ3Jg06y4Oqk9HSBm4X5CYxlkqi5FnZfc6duj+L2emYzMU8yskoFDs0bvC7kGTB6kiNsKI0mH8eGXqVR728F3HL4e3V48Od20D/NuK2krM28j2GEtFZcF9HA4aoW1ttXcYKXghephD0nQyEGMR1f5+Lz6eLj0sEr7/Pz5kaYykOZl27NaiHK3BfwodcNqmBwYb6uxfWoeAgRK/DnwfwJpSmy1t6H8fa2gsMSdHB2vpt796rs2XfCnEO4B5vWWZrhzku0DXVGv2w0tz4uQGBUzpWQfQuiNF7CaJVBFGD5zRYdlt2+mlvC69n0cktW8hBMeI1tLAcKaeuRYhI2OIaWGKwHj/5andqN6IeB3RNCQonAHy5q7LftDNiKNIucadwSOR74BjHxTxQYu71leNizRH+Df7HEZQPD4o9ybCIU7zrFalXKSzQ/ZobV5G9M/+4/pjFgS3FZLcGtcxBcTyv82VRXEyXDR2z8HVWCOb1nnU54loSvFwNLNwzcY+Lz6fBg/2AjiOBxmFxVcoZedgmtRFU/lkmR+rUH6v6TuWmkBOvSr6UoKc9hN9UH8gDxTF94ybYzx4RBajr+r0AvBLA3yr25Len8Q2XSRH966uGYn78UoiLtZue8diUG39mx7+dE7VmJYa5M1Ct1+BKyYtQFjerg2KTST9crgxqnZkC9xORZddnYS95+66FuVaZvzUqik3cq4EF31f61N+TIiQlbpV4IVaMRGykNZQ/9WwlVgeOU8WfI9R9EewxYhIX+zqieBXo1SlPt37FWA9qBojrLy9t8GkZNAS6ryDC4qAVdfPslW1Aw8+k1vWqZQx+KQOvU+djdR4+my8n/xGR7npED0t0Fm/OiM4RC17V/anrUdGk9J0ScNG1SHRtgw9CQZcLPEqYIbIcJKBmI1TeMlTSEuOaXt1XbtS56geuEwcjegF8E4D/GmOMMarxehL07uh06f0L0Tno6+01yIjMVVzcWhtxnRHVKmir66CSKvIPkJo2S92LVnSk/tQ4oVf5FnxhIq6xZSni3SVSAtEX/ZVnHValih0TTMhjs0hXKCgCjjqOlEVim0guYH10MZ6LUwN/wUmeE3x5r8o3Zc5MKSvubbnuK1XEakpcU4+hkuTPveCNLLTM6SVLGdgP7/DC6Akx1f5dOaXacQMnfJ1D/+lizkrzBwyjA13nbivFLYrSlAieAjHG72FU2KUtKBdZbkSRSJeic9nmAnfsRl1j91G4XFZRWLvEQYjeuq4/DsBVVVX/bJRHZUpUll8qjRUhsYB1lcmLtQcAzhsMLb0lopZrQUS6ig0cFDn6l2hXwfqvJ1BYKmgWuDlrr4d6FHsEZe317wHKzm0Mxigsda2kFe8YKZ5LJZUJS1U3XyUbYNgOlElFESrVUXbC6eOo2G1mHNZDqgPmeEvdzUhjMhf7+hIdu7rn+cF/z6eHaCBs4fo1aFyXI272YUTh2vO4vsB7YTHGj2ne7UW26AU1b91F4G6BoUD2xzn67D0mK0VP0N1DpIrOrl01/b+SIuD0KGGruIHHMBHvpAQvd7MqLRGiOHJuB0hZKPwxD75KQO4a+vNOoiCjgUpJ1Cm3OeNGKk27wkGIXgB/EMAn1nX9ZgDfA+CP1XX9P2R9+eUNxpwN9Nu8QC93GyDetG7ZF2/2UkJP9HrSiHp5buHAsPVF7hNgEuxVPJ+mLqyceMjFkxO+UT/nxyH+S870saPydb1TW0dO7BJyn23ediMtTV6q3470xeqYO38lCpQQdn54Pa9Pg4o79Zz+XDUTD35u7ici91H+zSI4iWlcrJQOVwZ3z/iBZ9hl01PiV3Gtipe5FhhWuEh9Neu0+majolWTf17U2o6UylJ7iqEQBt3z1tycVTgJS7g33LgZUpVVESUE4+KwG0ydR9TDx/4xVPeu3KgsiI63xg2qIpcSI/uPMsUluBHeOCjFs4pbI56O+Bl0XZUVh6NQKrQ3xUG8yFZV1TcA+AYAqOv64wF8QVVVfzbr8QLr+UkTe34TUEV4cIUSEKV17r4hrizDbEX2Lz8Aw1rBSsBeU45GdYlW50f9vKZXxheElZtCS7lRUGTH1/z2b71ksYKftBcP+mXA7raIHIkyNm3I1nnaL+jY8puXnPgX0pdo6/SJEiEqQh+wO1dWg5RQLSFJ1WxK+oux5aCwL5I9JkzmYp+ZkVJx99jJgMu8CmT/Sm1xGoB+RfXH6nV7r2zJX+pxVNIM/htEStSmLLe5XRzGvP/bwLV/7nO8tbxZX7bySL3AzOc8nub8SglcH1aOV8YI2QieQ8fAuvytQyUoHAUKd4VOOUr16+9H/KzkhZI+DNXE9o2DEL2TYaJ3if6yA7unet7l+vbKPQlR781uXwBYXgCnNj9vI2S/2R8Lhoj0vXrxW5YxSSdEq28fPacl7ByEaVmn1p7lrAspsWvhsgBehTXGdDG1leT87VABlQi21HWPBv0XfZX4tWUvbKE69RcuoFt/yqqgL63SrsYd3g8SbhhjRO11EOcMghKgUS/arLnVNtKHd85z+qk1vbwomM2Q3BDM/ym596A2wI/GHAf0Oc5+/ccj1HIFYMivIHdqiQP7Hy3CLN8aOl7202/xqqL03ZUXMoo62ArJ3EGauwclkkHuU4KXw4ymtpvEva0i1T+n1GdBsPbLf0C5EQIZdww1sMmFH4WzLxyc6K2q6scA/FiRY2uwJhz9/je+NGhosjpUHfty2HDP3d9jfs6eCVMJbG7Rplj8pqp2nhjZqQapxE0vPlF7c5WPCfUCWvgyyUdRL7DeFc78W9YNIpyCCQJ/LK5bVFkf7ftqf487Ut8ZWNNYAut9qdkhB8hD+aa/tIHjCAxkvWtRdCmojjAXRmRJUB3kjDRGcTHQJ6Ilhnzm2qo3KoQDoZRpM1JYKcGg7jEH+7QKRFqFnZ9iLXhZvEbvUKTW6eYsvwqc9aeshuidFr8+19tleHWJH3SzkOWxhRKqAcWEglmFq1DCNV7cKj6dgpCTpo7u/XWlWlUGFgTlzyM+zGnxsY+U4luuQ/vCwYneUfCvx9reufaFtdSIyi5fQLZEq0v+hStbj/qYXzvMvTtXxtTSB69iuEIzTtc/EXmuvLHgR75SRYKak3ABLXwtfhPh5u6M3HnjyupcPcym2ETZ7EgVTR0Be3cy/9x9L35Vf37FPZDauoB7JeeHO7aU8PXHkRbJdW4cjkpqzk2EfRPtjYevAF4VsZgEgIt1WZsNobfiwC+GjTajZuOG4mJVAXlEGD2Dq5TesBCJNtWB22eA72C91AFIi1de58uPr7YvU+H4R+q1DW5wbrket2tPyzn+UpTBbVrlXU78qqT79KTyP4IXvuY31/3k3CTjzZGTIvQSf4E7zlvvRNk8+Nfce/98Tw1EIntKVGaMfXHycYte+w64mWH9XDqTIYnABlg3elNmnQnSE5x/N+4hsF5GwW8upGoM0K99C3LDHUMkfgle4PQeLqU2ElCCtmTKxwsuxakGv/JkZT2IzB5TcaRqxheTfwT1/g6Xe4P+NKRVLz/usvurwKPlDb69dAFeuTah9AT6znsGvlyzUIhEcu44QqpKjBXLMwJwD6l6TFcB+CW2uyAxwmt6FT9yXaU4enFzWj1ZWYPxjchVdq7zSkxwdKdoRe5drNf1RluKRVuZqXc4vBu+nsIS3fIm/wD+Rbalfka2SUTtUglaVTTMc3yf41CcMUbw2j01bvLFXuKH3Wz9S2yqgtl1n5mCaKOBgg82yt9U1CVJLuHmXJntk4ePW/Qu0QpfU2m8jjfRyy6BYQvtzrkjB9YbRAyWNnCLVqzgrxuxGun6llNQ43jD8kGDD56bG4MiUBWXcqu0qSI7G08wqVuyTlJvbRi4U/LXUzhw8VuaPLZKRPDZo6xSxYkIRIMiKRa4KqhcVCmwn8iSwNcUuZfEN2NDqAG3cZ2/hn41G9Beat9EFb4aYSFwm0v7KfoVSQz4vBf75aAX6Ft5z9x1hdRKDnVP8WoWSoG6vsxzt3pXwNLP7UgJXmXpA3Q+qi5LcVdKIEdFz+dTJhT9808GJ6h0g/AC0uLdhlKc7IONeJKj5rFSDlHZp9ztE8cteu1FNjPFmsXXL3b1xEgd+MrU4Ef4jpSNE06xXt4w+CKbsRnHYy1FjdqA4ZreUwojAxa+qygEe0QVT1l0WeCeklsvfJVFkbPAG94BIk0/hwfnYNcoyN+Sxr0LERWJOa/7OV5fFpZ9VrX4s589JitZ3rDUY8PIGMGdWqqDA/lRpFoiXMeWw4GPh44TiuOUGWe5njng3SKBjl9yyxu4EnLlVBXM+7VG4ZeW+XRSWKn6G4mw2wDuof8yWwolSxxSSxsiDLQ+55N7R4XtOH72Lmf1VHYm7s6Mn1SbV/7VANvO/W+pyLL70bNYOLyeeSOw4lfXfERqZK8UfWDU4rrKgjXKH+belAFBcXUkc3Jh+fN98fJxi17fGjyD+lob5OQSCEmTG6wP/rwBbvvlDTZXr3p7r1B8OjzZpswITd8Lk55svNFwewR4va6K9wJ9eEJbos0e61vgfntp5zckvMIuGZIzQUSt6cq5SYUxAftqqCx81X01icDCt7EE+3biQW2Bt+8D+tmsqlrE1aV5VSJ0o+upDrHE/4wNEKlB6tB5m3MzNsqlDdGUFAvdlKBQ6VTrhjyBBf0Be4mCu4W14L0r7qt6yVSomufUVx9W/Z11Zpb5DVYF4Lsgtt2k2kpK8HKYSuhCuPHpVgLYxw2k08cwDu3VuX3BCJnByl21I6ValzHfqqDtPKWnx+al4n67p9x7d9fBwTdD9JrKYiJkAiOvPWuta+VKh/rvX9xWu0MMAqf7duyHzp5RpNl2iKgPWCUhIXijRhGFmbIEMzyR2DG/6AasX+ZYhcOdmwIrvlJVlMK+1GoBpiTfVycvdNUvW3BWUHlAPQxXc2XF8dVdCeOU9oiQEsxTxi4lInjGBvD7pfv1soxm7UxR1cL+Ret5LQxVqVVFtPOo4I17rQ/wAr3pO1NCjjW3/S7QLm3wOzj4JEZgGvRWXl7mkKLNrHixhLsdj/wzndKxp102SnJ+sLCFcK9sMznO4PNIOOUGFAr+mTmssQONqwY4GelHYkTHoAYKio/Znf9VMoYHKCVJmjIo2ScvH7fo9fNi9qaZt2AphnK3Vve86YFG9ibcHqAlrwcA7tkyCm6ZkZU1qml+iYNPM7sj8MsNPX6+pOcZqahS1mQ2xCphyw2EyaZn1Zm6wCp1nrs2RWHuCbmGr6y9avzk3S/p3up+ZOl1LMdWXtW5wZ2rqqvImIU0X/Puo/NNi/OAq8Hxgwue1JHnVj9pBojlDanZCDZ0+LjMXcr8tUR/eRrf6/7UYI+9cH2yl9juoW/Ys0lBNXY3ML97RNdSWKXZ5xW/SUjPaeF6mwyn2bdBJWijAQKnSwll9hMJNFXNFPxgxPwxh24DvkqN8iTWvffucyUkvRJ5BdJ5FvFoih+VAC6VPCod+zZEHLfoZbJLtRBRilcNcNKQX/QLxS4v4DaHEH568XkoE4C5PYP2X1ALwrd2BcOUdPBqyYK/V+qPRZb368V5b3kDr+vdN65JAaWi9fdyhGz57a0Sdo0N5L04U5bepbbksDduAlzdlZsUIr5PJZn9jiHwGVtC1FkLRcF9d48T7IAXtLJRgAPz91JWXVYlnD4S0bw/tXfG0XvYi2z+JbYx9ZBfcyhd8cUYxOkFlCXefYKY3Run+DKKxH5U/JHQ5XiipHL4YwXvLjE5Xk9WbPji+xOCzqXLu5nK1eY3qgNj82ZfZXjcovey+wP6W4kZy/RMoGv4xnhq7r11FEMNbcsbHgDawgDnITVUNfh1wGoEJ8DEp9rIyoRCNTpqO0prqrW7dqxeprBHsej8n70IaGkwMXYKrL/PyW9ulCDVsZViJKFs2iinii/z59ehsSjmMZVNIgD9ambu+I3fFTrH1tn7joatMlzNmacVgbJFCIGbMXmVepScu+vqLG8sUgP3rpL4OsSfJV8NhtW6XgpnsM86u0lVML/w3bvxjWkZ13nuWrjun6EVvY+7qPyMTK7eRSs77B6/DpHDEs7IYw/kt/m8GNpxUmkwKAMR/3LfwG5VV7kUYXN8nAaIe2oZ4CJxvjVMIftotJ6qhMu1U66TSl5kaL8XdeQ/92i5QWJ0vpUlIQU4btF7hbUqU3v1ehFJpW1t/jESnNzZL9GPYrVtmf/zrYZLMxoK2XU/f8RWi4z49Za8XvgZ8RxBCWpPrkyCbOX1WbnA+jshkebvmau3Nb9kmEI6B6KAcklnojb3vjP1y158NTO3lwjWni37X2bi8Rifw10HXfPpVaKY3Uecn/Ijkr+KM8KUqjGjACwyuQfu/rzg9fxxik6DquUNrFS4UvG5IaoszLlMppRWRakpmrX1vHexFrs8k5YTv9EuDh6Kpxm+7fa+yuYLYTnMqjFtKRK83O5PxL3IPeg8EkycFnVt291LEZYYzuayMlV+vJsCsmInOWHKxooxfn2cSmD7c3NXInj3ieMWvb7VeLMB96TBiL8BBpUsNRK1JcPhtzMVEfu0AsP558GiXMhaUDLFvTqgGpfTcmoDBXXdLwPlvmiJ/hS6Pda5u+4FWW/t3lRGYnbcgWg9JIFk+erPgf6LJXxfWXzhzhckfJXgVRrDh8HVPRrvlUA1qeievxbFc0jld6NR2pMtYxG58AepF9ks/CiuqVzAPfVy+Fh2rNqBxymGL7ExrH2y/013cfCPIbNB9ZdN7N6nMxpTpIRrNBZiwcxJjESUP1dpUvDcyUaDvSAaHQH9jlFdV6OALoNsxi5yylzM99lPlPTUvagsxnLvvrj6uEWv3+RRWV/V54I7rBqVf5OCGr4dWxRmvezFq0qZW2yOhBX79+K44wAAIABJREFUBTVggb4RZEB+lwXxubAMaimDHbN7XupgsMfwxhNgmB09i45f3pCbR9slU2Va3KGIJz+g4Crj19v5MZUfkJhbP628EMSp/lIiOPqF8M9hRR2pOi8lakbUKczYA3wFxJqumT6lpZcHxebJrLKKa/k4JzbUaLILN2UESdVhW95wzz2bvcQL9NumgjIuMF2y2wi+va4svX7LTVresOIF9xt1J9xXqrzyxcBFwoKJ85P7Y+WnFKqYr8UCbJED+YfJjmDGD/yjwQRfV1poCZ0UFWYqjddl5QVuiugF+h+N4N4a6JWEN7ZyL86EZn8+mtUyCn/Dh+XPKe6eQvHq0CeqsEZ4AlxFQTUzXLuZAS91iHZ1MCLmrz97I/YC/WxaPe7U5Q2cxyWMrH5HRLMt5KLm+76T9G5Og2Ogv1zRk5XvvLgDYsEcCVxFfIoYgXTRMKKmU+rX/+6i3GaMgCfOBv3K1azrCG+rvkD3lcZTrNf7R/zgK6bFGZkp2R83FFaRrvJzG0gNnpZYz5r45Q0cdClY8Eb3FcKsMCuO/bo+09l+euGXzDKmOMLzRGrgO0bwpoScx7WJ2qmIRgtwxy7jVBen5A/nXyOugfzkkCqDKOkp9/Oa3hL4VnOG/gtmdp9bEXlXlYwriwm23u4NKQZUYtsTrZ2bJUN9xUEgeomtB2YOlFdkZUHgNXf+OluELR62YnD8A4vOpi+vTXW3G+9bi5PHSqpv9ssQuWp5vWHVLGU48FWWOyOOl8uWrV1RpztGo6ixIqczhZS7MaJ6RiFyROMMC1y3BkueDIofeOSmKvLYAlY98rJ/S/1GIuwUa+Hrg1Nrb62dKvBsHG92k5v8GnQr3HA7wZsyjjB38/WU4I2yNccxSiyNFbx27yiEryJ4vh88aE46lPIl3+eyyfUFHEYUb6rf2QeOX/SaxdV2YPDmg0TrWxWgGDkpzWy/qxfZGqwtvtHGfAnBDUCv5+0lTtxDf3nBoEHTM4+1nlmYXsxGL7j5++qFNu/uwrldrXPzC958gJssY7jBasbzoiJzJh8/APFNxd/37n04qc4p1elz1VW6JGdZUB0eH0dIEafyP1uFt4SogAV8nfBOV7M/t7He60spllQFHFOgvoH4EaNLXFTno47cgrHlDXex7p68v2h7SIVoXW8OMmvY0tv1YXYp6rKMQ6LwI8GrLIpsMwJdVxwV2ZdK4LnSjnMacwpk1VOJtArhz30G53SDXXf3vFf+42C4PvOv0tfcvLn8cuUSleN1dNfHL3ot9y8wLI1oaOhvUyvlzttu2QtZAz8cvmrtqkZ49WLky6xTAJ7a7oVREE6JhcHc8dfZFGk04p4lxVsqpKV3DLOPbS1cJw4cUTKZrL07znPraK16+QkFrmZqeQNXZU+iUWfm4x+DlDUgZT2IyDMV/w0eFx0OVAV2nOT51S/flbM//lxVjFwlKCnwoNdW7YDTr4K/hb5293YSJSCjZG7LStlr76JzU8/iuyrWZf6+GtQyb5g79R6IElqpYubjo4YSwHysRhPOCXMigwcn6vo2kOLpEr/z8oYS+LW1CzoH9JDGYQlIc5Tq3I20HgBYNsCpxWP7cvGWY1ENU293GaNwDRY1xi8tkEZRYq+oQkdrdj2U8FUvWPBuP5Z8n6QL9Lfl7W1ZVjJHl7L4RH5yYQp3U9dA7xMmfDlbWADbo3nxqywCquy4U1d/7A4Uh3KnBATIvT9Xx2NwBMV5sxBluOM1q3f+K/AAzf54C2w0pVEysE+pS2944O3KurDVIFFFadcsqbexXt5gumaJ9RaOY8Bre/m9ihQG6bY885/Duxj2eRafP2dEecPHng9O0W//ajDRBMccr39GhhLXB7HMwSoDJzpKYGFl4fxJNYvIYBH1AUIihXGlRHU0Rt03Rx+36PWK1NSgf5nNuwF0TaBSVQXPG0OcA3jM/KkWnxumGvzcs/dbaO2VyxusN3EsVlqplJDuWWGcO8tyFXY06jdr4+3ub6WCgc0ZaaSF/Njhxarvr5VVJmoK0Q4c3i1bebmTKrH8pKDcRlZevhaRZ0qURAOzGVtAimfddTV4GqzpDUf1GKoiNhCMMS9Z5NagaCQXCTJuDxyt/ziF75IKX98YILVjQ0SdSoz0PlDhOjX/EtsYMeKzy85T7ZNFFKd3jOBNpc+K86AQJdiTORMu6Nw1Gv+ZeGCYp6pcVF4qzZMC1xN+NOU/qhMc7j5w/KLXl2a0jRiRYm9JAJVeZOXyH6hogKFF2YOHSHzPJ8RUCy93SIDX0Fq6+wf5cMbCJ9Ov5bVjZS2w46Xzt/o0p9qSqARjW+kNgAlZBU/wLIb5hbZo9M3hcfVNkSVzNcR1dpNqFrn4SpESwTO2jJSCoetKq670rTdnlqyjijBmRMOjRPPf9PsA0HEKt7DepxfoP5a1RX4pTG0NxsYGRjQB5pczsY7qfaCi68eUEPWcDZE278buRwPRnJ9I2Kb85XCQwndHiMQu30v5jzg45T83IMnF7d3NyxtK0Fk1ry66rW68OdaQYKnG3xcjJ+/O+OEBWuF7z/zZ8oZeoC5uvsbmOW/t9WC2JYSzf5amZZyEEnghyy+rsSWYwUm2dWy+L1tZdXImC+sd/G8pbojaUeSjXsbg+8C67nI1a9D/RLSKy4tVZdWKxHHpOCQSySlMsfKmwpmxJ7gKY/XD0dRKpPXedPX8oIwCrJhKFKnn3tPg3IWrBnTRQM6SD/RfZDvtfm2JV2qWLAIvcYjup2BpPrXOzM2Qqnbrs9zHo4SOsuKq4vEGJ2UlVscczxgcjPCNEh492DL4o3aU4s+U0UJZflPJUnUd5EbFw2Gkru8Lxy163Sj11H9kwjOp6rE7LNGf7lEVxgvenqbuBLdsnb5W+esGP6T3xGvuRrTswcYRDf0hrlTKYpwC90Fs9fX9h4+3wXolgy1tOLVeburLa6XDz5Tba1A+29Lt1oHweIrv23VeMh5Vs1QnFv3B+fHhpMSBilOlIXKTQ0k8U8KdkUGB8OQ6AThu8YKXd1bwAXBcKk5fCXjxuzc62MieK/Vy/cP1N1eX7CU2E712vhL3QRgpqO3LUgi00vrEfcSJVwRaHKmwvduU4E0NFkD3fJhRXOqeIZfmba/rLRLUuf6IRwMjK4YSu4o7I/7l8inpFjmZUT+g0pBzs2sct+jtrLPnAG43wKkXooYUKXZOT7uSVo3RCtet+W+D9wI7VfNTFZ6tvZYgrnnLvhdDyYtspbqOlyqkxLC/nyMRn0X2dwYMtytr3PEmeMRNeH68x2Mpn83RKD81svfnXD1ZLOfSqKo4E7d/Hvbvf1NFntNCM/YA6nWVlWkw+5N7yZUr4TbSyGbIJl3XU/pkgeHyBv+9DdPZnAS1xMH8Q/gpRa+tsBq+iNskp0GJm5zgZW6IBscc5iDdibT56wfxwloOpQpP6QenV1Lygrmbg4D4Zb9cjlOtvBH2JXQ9jlv0LvtbwTxmqtQvOfAtqvvlmbLTzk2qwpjwteCVRXUFNo9FYGuvS+Pg2MFrZO4XrnyPQv5VcLw2l/fnXYpj9ueXLHD0jXNrL7ENPjU6FWM7vags9qSCSq28pcmx8lDWXl+1VDWLxCl36FyVuTmxRdg/gyLMiMM5fpWmUgK9TivCjA6RSln264Wvm6s1vWzh5cWvKZPh1HT6F4lcermum5eGzg3W/m5hbelF9/sA6+3LInHmB6oRSkRdNIBcAsP97M/1QISzXaXVwo8EL6fF+80NdFV7LinqbQrfMd1TsdXXT89e0T0gtjYED8/5zM4G5U/uFG+nkOLsMeXJYcxregtga3BXGtfYhHtmNURxt7Fcb1UVjZz8G7i90TIj1cOryHnhFItlFwY3KrW+68r8NOv82XaHr8SxiStlIfb92CrNfhpzG+AHvQHmvCkEzx0wVzHVias4mSi5OueEbi7NJcWTE+U+naX+x3agMwpxhbTKAXoZzjS3ogJPKNECVtVbj4VX2/6clJsScyW47f5s4O+3bLRfJTJVHFNpktvxEt2SPjvp3sz266vh/Bg4rSpsBeYMC0dxiXd/6G1z69bk6METIwYlEyIZkQtyytgxZ+XN+WH3V+LeLnDcohfrEeo5gHtemap9Fwnm96oZWig97FpvNzRrqeeI3yYq6dmVcsh1Hg5yyynxEGMqtBLXkeBmkavc+jVtq50b/H6c0XM26L9kYogYM4UbIIi5DJXYja75d3Tsnm8ebCG2+u47/JxVF/TLflLPw+lhN7OV90iQy+xmWC8Gy55s8Su/5MoVODddUZpeRaJd+NFMhz9XUa7W854Bdy/63OeXN7BlLCem+L2+6HF82O5xVn+n/oXvwNJbApUPXL6RwVINpIE0D4xJ17aE6TZtMxIqsUyqiQLKDRS4THzwUZkr671yy+UJOo7Sdp2Dm6MWvaY5bYp92bg3U4Hh0Hm5vqzEATdAX9C2c8OKK7wi4J5WqYAIrBKZRRLwRhHv3eJXlTQXrN8liIXtKV1nd9Z2fZaw0aa3vMGv6y2t/bOCWcHy23MmZw9be7kj9GHBuUl18qnrPg6VXhVviizVNY6nVPfMVt5rhKsknlMNp+h24PFroQA9ilbqSfGwR/SWp/nnsDt3qc7eg9vhAu3HKXCn7ZPOmjUH2lZiZyIcL3xTg1w7L3mnQnUvvX4yWNOr0sFLtDh/Io5gKAEGuga6xrDruTzwg/ox2PvaYKUZVAVp+oY674wHG6Xc6P3muDEllksGMeoxp5bRFBzEbh5TIUchfq9e7pWDMPxvxJ0WzGoaSPX67DmqQT49vnaqGpNRqVLAL0cFAWDa8loWv6fi3mlwPLDmlL4RZyh5qCicLWJfDagk2SpLGvr19Z3HbEyUSiAvKYxovMdtkxFVd3YzBrOV9zigxNXgJbbeDRGA6jlLIzekKsxyuOQtslSqJNj7CzbKt3O1XJn5Ee6eMmyUcI5qX71+0ixGnfiNhH0kVFID2NRAgf3kaDzihRx3HCRSij7VWWfUaEk/H5Vt1IwG9SWD0jKNBkD7xNFber3uvEC7i0OoXLtrvMbR/zG8MDBLb+NvpDxGPb4Nl71ZlR8KSNY2Noj4aH2826hQfs2uf4HN3/fWYE62n9pbWXr5c6Pbqvm+PK6wv9Xx14QlhlZ2hq9mXuBGHQdXbe7Iot8UOUbN4bqtvEfTYR4LUr3ksv+egd8mawH0B8KsAF0Yq4pcOspRpLQMrrtn4AGhGigyLMm9ZVxnwO2Ha/57gP6SIwtfzXBvCs8LPv1XF91WnRfAsll/dCkqupI1vWqQy8J5EVxPtXkE53wvspts0zCxtbCY+NQSm0Q7UgMw88blqIwXUVJSblIDHXXsfzlMdX1f4veoRS8T0BJoWy+vs13dXCNahqtGOHztHO5lALgE+PkgZkwfMSsUXp8Q1VoBtTrC/BcGMYCJ2NTLaUoIK7f8Xspq7V7pQilFCIZtK5YdKCC/vGBXjZqFr11TOznAXYvSowgqJ5KBITFGlgLmc3U8tihmK+81I1VByBl32Csq8IL3lG8SfADbLGjq2ZcY1lfvNMLKINEpXX6Rl3e8UfwQXYtgXKwEtN33j3d6vn6OsdY5f135V/2oCi8S0qVp2BWudQpcCZIoM5EeJCgJouxqpRZdTlbOjUqfErypQcu2cfSi10Qo4D4aodRXUEqRNlVx+X16G7h1UanS8sweRaIqubl19xQByj6hq+3RaJChGnhkzY1eYOM08fkCayvvYHlDVF5RvqYYtsS9+dkQkaFoqrsIUwSg6jBZJ9gfZzNnZ87q69MYDbRyY7mUBSJnNeC0R+Hw/VkU7xE0yuJB1wJYK0V+ccB78iO8nFrzYMOCn23jSumMBlzHmVMjmroF4MTeZrsYLm3whoKUqIzEl2qz6hF9eo0TbNvNxzrO9SsCVXZG/KW6qcgiGLnjcPw5x7MpSkRVys0icLMVgcwPn7JKIG84iAwJOQNDiuujMgXdS9WVsYPHXeCoRS8XygXQt/QGLyt4oahEAMdhv373hnMAj3mzBc8t+1qi5oY8eHkDpZfho/Lve6y8jR22UdhqRwZO5iL442zwgtcL3x7zm5pGkG5v7Y1a3QEhV9ybYiAW0O/HGTwBYWGkOtuI8JbBeapDS3ViOeHMUAJWkW0u/2fBu0e4AvL1x8pgRdWsCFMvsW3a7j1nBw02Vf9Bv/7dBnsUv67rdNG+zMaaPhLNqfZc8lh8TY4VOqI3Y453563GBu4zgbTgjdrzdQhehhpTGXZicVyiLXxlieA1isosGyjPFNequmrHLDMUT0fICW7/m7NDcV3aB476RTavOVeF39ANIFuaqcpiQQJ9YuiFy2qAS7yhP/UgkZpIPIJ6yaHpHNvauU0qUrSsLuUeSL+sYcI3uW5vGxjLlhtk1Cn98nHOH2NMlkRWTNB11RH5ZqKqnxKj6nrKOgByE53zM+SEcGnxluTPjC0i6j2X6x+mt97yhsjKq+LYYHBfEjbTt+oTItpYrVF201tK0wP6UVOrO0pFmeqKfLZddZYcJYAQ+PXXSiy8LLBSg1aV/n1hX1PrEjkFGXhhbeyPo3wu5cOIx9mNOuZrJUJ4n7aro7b0/v/svV2sddmaFvTstWp/VXVOFW1DNyg/nQ4/MbYVOFESRYkaXCAcNIKNwcQQLyAkGkHbG6PChUoChIuOMcRoMDFwY4BoG6SvFn+JEhu9aKE8ogYUkL+2u+nTp+pU1be/NbcXa71rPfOZz/uOMedae+29v9pPsvacc8zxN+d8xzue8Ywx577H/kbe0XbETHkEL1bCqw0yo8iE21B934/ErEisJYEWqBkrlDg3hmChHHDW8TkTzdKBqx3X5RSG7GsMg9nnzgx0nt9gHlW8h+W5EfJcXFkVrpQaXX7Qu+Y3cxg9ii+n7yGdVYeZKTMuv6wT1LyrPDguY4nK+4IHQM8IW4hv+AuAljfoaJm34WuBeYRXfa97oSMaIPlfdcORXNvAsf5U1Oibw/EFhzu/xEGrGOU4X9oDTaPt9zVO/xluPYxnMJ3/UMVXyzEaje1zWm39MdqwfoFIUd13XcY3C63+zI32DQt1AxGY4+re9nCFjAC7fKuwOYOeh8KzJr3AmIy+xuGtVF5na0ioM2TXyWs5d7I9zgs5r8DWNmeeaoZC7d77UCXlEs7DLXlwcaJPcmuemDDfIomo2DXiXKK1XMi7Rp/Z86iXTFu24IhvhHO52gG6fOK82pKO/nvOQ/LjY913JNuh1U71WrLysjxe8AAYThv2TaN/zMgH6QsLB6jRObjlEVEJfqGY6seV5Ho6tbfCGpj8Rx4e/PMKPNdF9PiTOe4zfHNciy7V04Gsuy2KTAGuiFhPW8+uN+L2EMxMHZ8zeGBN5qJK8A4183KsdFcHVb7WPSdtOq4/qBT4jC/1Etkq7UPjWS9vYGf0mvarHja+veiW0faUx05wckIzcwzUWZ3GUU9RwPn1XsNb8vDdFJ1zMKry8qzlsUPomcp0qFpHxuau1aIeEa0Re9Y5DfRLbVzKqAivxs9IZo9y20OEXVgP4X3BA6AiooO3kdGa3mzOXw33XGRMbJhGU1t07jwQ1X8HGP8LtvXUL0Z8twyMcQ7h0kvTNj76L6PIiSxDFcSK8M4d3LYI71PBEhLdBXdjGbsTh4loWZIsC5PlJD+19Vazy0g2b+f68IfCs1Z6tUEf30odKKDhLHc4/Wcc5aRaDme5Ax04T8XWyC229ZaTsopGa+f/5x7JnBEDfYbFqi5/qYGXPzjwS2yhUER+oe6y8DGSOUCJFTvUnqVqlTtczMJZMXnKUDXE3ZKIx7au1+dUgKxD08fmSLPaYeYYHSpyrOXOwVPrSJ81ql6RHrJrrkf/pd/zyvKJ/Us8wDB+08tXmoTCElVxevwyW/hUXU7Gl8hLnnpmh9x59slMdKMOwOmLRNyeddbItXFIGiU+zj9kPqOCI929go2Lt0QpboUvRtwofsBm1qHFBaqBgw543LPpHUuq/btBIUyY4yBzeMkl8axJLzBuzKH2HgPYedKdVY7ae9PdAzuy5ghUUqukjVlJNuSR8PvE2DNlIIp5qBGVTvuoE+GpOV0zdVQ7qqlLhWNlLxjdCncr+bbp+IudF5tipeBUykw17sgccssxZoS9Fdaj8r4Q3itjNz3kZ3C039YiS07cYnmcp4OyJyG+mfARWzceHymAPOIPfzecqiRBo/RR5lziq1DXycQ3Ppqzkx/XqSqzGiCDzinmzML0ttN1sj8XvWt4L47ei5fBWI+w0CoyK7oa5GXhvc/rEqLFUjxr0ssOaDRajeHzWiIVT2SgX+bsdMQ0+mivG6IbAtuESiG7cT0U/P1Hvg6t65xqsMIL2c/ePYtbreXEY2BFetQhLBlxAOexlqq1PyAy9TXrWOZ0chGP7WBlwjk+3wYtyzlQZ5pOPXCcpFf5yYgwoyLfL3hkNBRfVU0B0ibCSWQDYmc457BAzYvL2E1de2Z3rqrHl3Xjd7hIXbasK7xalzNHJ4h6BHmOa4hreo2Tb9f2npHx5FYdt450qZ/ROuq+5q9YqvIqMV5J3NZYq6f88vn02KozNm0wJkk20HDNpEVkM3HBpcvy563aQVa/Bx1UEJ416ZWB+fG9MutV6amwT3UdfqvMY9Z84BbWZtYVBbp5ow6mykTm+M8eXP06EY4ve3s1zjkncidx4pLYgbBjP36nl9fuqbWzBFmhushnIuWp7TlbXEp+s4kHIB/cwZzvIbycT4/ywzbaUni13tk5PZ9d3zMxjeeFltPZnTYsMIw4rk5bsW+IyJmIkZXNI3aNy40k8qS82ZcqWd9J0vTrDUHk6bNlSnRZMHB8vOfLLnoZeknc3/FLdCwYxXntntSHZKSlIrya9poD1pZ6Wy1lmDMhOQsVy284QmeHkVx9dssX9/hcF54JF0sJ7zXxrF9kS5VeJY1JC1xizBMuqz1/D+N0VqthlH/mQAD/krNmuRQtZwCzjTq5fJgAd3mTzNPPZS0XZjxL7ObSjrPHxICpWWrHlP12sp8RXi4vI8Ba316brOy+6jPmlPdCgC+MqncbTofqm0btI1uzxb3kHOeW+Rqul5Og4YkD0Fk0T22RtJhNxVc+orejrga4rl3Hlxv4sh1x4R9M/KqdN7phizntcs7ShqWEZ7G6q9CL5wfi4l2oM6/Gh5VoURXdqk71DFv++yHxrJVeYPxQYp3S/d3hX0AOOM3hHCI5EVF9KTsFmPgTcs2ReQ47myvIoIyiYQUrjD+CEFVyo6veqrQW/jvhhFWOKEeFXP1NXmTLwLJFHDOuPUycCRaqWmBFp0fdaWGHqVrjVAEHpxA4YuvC3bHLEyZO1UFeQiV6IbkPBDUuxeHhO1905IM65+zyoLzOHtUDp0bCx4f8nR7B1dCiueojpZfWNPDyhviFv+Qt5zdnkKhqb1xe5BEzc68pLiu9WTq3vCG7Hy0FkTGX/FxqacPc9HPLWIyGg+J/OqUDD/1plln8OG75Rtdn9Dzzqt08Rvf9rEnvgNM/qAh+G/vreEWVIx/gBv49N59J3Q4Hch0H2dvGmSXp0gY3LDcV0+ycKNIyKhfmptmV3GoYp9H1o+osJ9N6czzEnNY4d6AxEz083a1acbgEsWXo84swN03pxAXNx432VSlWB+uOOQ8Ny8pTtBxmj8r7zMZLzxMNo1J7mPiESpVlB6wjL4W+mODqqKxS8tSiBtlnMHk9Zh3LGmJN7+24ao40MQdXf9rrL/hWKfiWRDn6n0aV+HJddH8u4T2H8GTL79x+FRZ5ubTZJIOeO2uKfAfPvJSRqsElDz8b+ympDVR+UH29y1vDMxpTHbtzD7KMxOBZk17g9HDuaLsDsHa9b8NjZMYTYNXumNWgAZ1gjxZeRmUF6igyB1YpvZckVOxEM+JHgvpkucNkli9TdXor3cvmHwitd/AqlcZ1JD1keg6yDovPZ+U5R9UivNkx55PlXV2DpnfICG+FF8J7YWSDTWGNWWcJYPpmEeeh2w5/bvNSsqw+iAw5I3fdtqOOD9OOveLmS9BDWKNadxTGbTpby6vlcJ4a5uJqvzAHc0hmtbyuiu/q1irXLe+7OOQh8GBM77kbE1Y+WSdPMrh8iypOyu2Jfy08a9Krjih+d9h/D/GGPYl4K/WplSDrGk2kOZJrXQPAXqQHbCGULvtcWSCWONybrFwVevoJJrjZy2suvpJiXdI2Wd4QkR3O8ZBXhLtX5zZoVcp78qucDnd+PQTRKbBOTJ9DeFtjlKXxK8y1+xdcAE5aiuPdZHcq7lZLHJzBtR5sqwFpgzD1lOBR0eX6XP1kzauxyqvxB4z9CbBsNqgirI5k8/IGYEx8Iw3nzfGysBYR7vWRvWtpe1VeDau6mIzQXrxbUseWyaK7mkBmBNhl5bZVtbLwagYvS5f55WsR4Wf9Ihsw9n/8MtsQJ4X1Lb2x7JhHD88N/dU7GuOdkFxT1x5vFzNniqxKc9DipW4qKHMUOiZIpzEZrVbXuqgHbkVLprpaU3Ststxxz21wjin7aUffQ3hBx7rfcoqVs2ypBJnTrJrRY6oMby06B/jO1Y1mfxRZr/3Ao5gQG9T2W7Y08pmxpIGI/M1q+uUG9SPu5eQMjpRHXV39VCXU9u6ui+O68xp2LuEdvfCcoOqTWuE9/voconvTU4Cbjs2cp9xI9slOLMh8co9ooGPJrKll4VpW1gfwuao+D4Fnr/Rq58vrk9Y72GEqOx2e4XK8k6GK2Y4TVZaRqQ1ZmFhuxvFiecMaJ6VXk7uGsRTqlPU7vvwyxkDxOF3LmR0vQverufoHRK/S2hPPxVElp6Xs9Co/TqVR8tsaUzjH5whvK36WZxWehc0lvApHAl5wIajz5Ic8nF7CqWzPzpg5IykzEWjD28k5zXOY9gUqLsdxJgwcSTz/wiFSP8Txd6aqegmt9h95RJ11HT/HC+g/LtUZq8z1Vu3zIQlNDyFtLTvQQQXHf1QlsLpZgz+dDXCoKXO/AAAgAElEQVQcMVVevSviurxcGa7sql5ajyt36c+b9AaY8Ma3eo9LHJK7W/lBd6yN4WgkPQ54zlMVJlEZNC8Z4+UNPIisRttzOvzKGTPhDXBnMFnaECfUuyy5h70X0alEMS79otlcLC0/Ew8Ylcm60bpzjo4Au/S94a4OWmd3vmrHlXN9IbwXRDggZVqB3dSO1IdNGKQ+cDaYyrk5ZMwtER4cwW0l42JW8Sf8HCkt7Ad1KdOcS2oNWluI/2Cq7VAHzL1tqofwnktwKsKr5qMKuiPArZfTlBhrv5blOwvZ9MFOfibY+VT17UpYMyVY41ZE1z3jiuS6eBr3Wv74WZNefUDqpAYc1F5JU+VXgUfQE9Lg1AO2GJaTK9BFZOt5OTi+iNMaOV1qNKVCzJAcs+IAjB3ETZfc24C26kt71wuB74E+Th1I9KrKFVrm1Tsg4rg9hFfzX0J4L60SvZDaKyN7gMM0WvpsMibBBqf7FZiAq1NylaKKOWFZi+YPBE3A6i6RX3eJ7DuVn58z+FYhwt2KzBf0dFW6f00FzxHeVtzq6wyKlWwfHNXo/RBW9e2uC6y6xUy0cOgd+C3x97F/LTL6rElvYMBebXyFqXNaDcDNIR6TSDboHhGQedpoBBQ7bui+o3O93oAqz+TdJV3jtKbXrfHU0eAc8IjWvVnM4dUIWdevda/di+3cYfQTIbsttAivKkDnXJYbTVc2XzmsjAC30lXhrTDdnxtHz7nzLzgT7BRdmx2mvHLAmA+mfkFHVVZ1MIiG05rW0/J2nuRW9qo+cLS8Qd/mRR+hmtPuq3i8SsQNwuNTn5xPNTbIjnsG3EtV0R6Fl8Mr9dblp3nZ5SodZc++vpgZ4WPeNySAgzLhQW21Mv+MvGazbS2/nfn7rMxrd9nPmvSqQ+KlDex/V8MpDnAyzuyh6kNwDeH48Nn6sldme8OMgTuSoXXjaZdKyWv1Ey2Cy1unWkb7dY5zIu5W3sG1iGzKE+b4woxm7rRjpe4C89bt8n7vur5AjzOpyKEjrRmRrVRhDddyL014FS+E9wpoPeCESAaaZIH9rLJnhfPD2fKGgDAItmcl6j32c1yuoQ4aYw4ccflfvVeDYYe55+Oawo9o212S50MpvNV63Sw8W9bgBiY6LqnyrzAh11UmGfHgfRPnfqiTqm1Wx0o1uFm5qjgbyny/7qMzHi/RfEg8CdK73W5/EMDvAPAx9oLt9wL4nZvN5g/1pFclqvUAA2qoLWcWjYP9+/1w+AcVvMaAHawLywqlSsdLHy4J1/8V7XOWnNaJJRmY+PaQvZ6XMSaj5CXzRdceDj4QXCd27trhXkWo6rxbZLcKr0hxlV7LrepSpZtDal8Ib43FvlidTmxFoQKdimhHd6CqgvpRJb4PgWFaPz52/pQxGdgru0183yWWNqGol0NLUKnSLC1zDnoIb7Ved0m8qrxFSu6lIDdem0GLcC71l5pHFtf5dhde+fZr3dsu0rvdblcAfiOADYBfcAj+GwC2AH5os9mc1V43m80PbLfb37LZbL623W6/F8Afn0N4dzj9W8UwhjuM/9WiYq6TUX/FCsDasWtQZXT4nvXeRHiN6GsRa8r0k8Sa9blgQntXhAV01NzlMJZ4zyuS4RgEZLbDa+QcHLntXdbgyqxsODM3Pt8il3PIbhXuzrXCsjppuKJSrnviP3U8ZV88khANY2SfqVrAEfZt4QPYufNneqordo2y1SB2p2gqpFRQgnTcEbVXl34NyP/TZQbn43vaSPhrjtv6xxhZXnPbWg+qPqJacqBxKpJbjD1GeVfK75y1wSO4DkQVKsjxMA3SLPWcG6A5kqx5cRreahwtW+vB25awfW0f3CS92+32+wD8cQD/IPbLY+9xWib72wH8n9vt9jdtNpv/7cFqmUBvlj6o1lQU257rqF38iMvx12xZvI4sq6gWRJkx4YWJovXJGqYz2l7jWqI6ZAqmIl27F9DKZt5piaTRQiFtK2FlAjy3OlXxD83he0b8PSS2Gudl5TwE4a2cZ6sN7XByZM8BT9kX9460XafdHBDv5KdlOsxdkwSMnCZfTqZQN6vhWPBh2/Pi1Zzq97aROGYR3ZGh3rKyMuaiRSB71thWyxhcHjr40GUnWflZ/hdDQgDcpDAfu33OsgrT/BSuvB7OpHlo/F4x45Ion9d2u/05AP4UgO8G8G8A+EXYO9l/GsAvBfC7AHzXPur273/YqnqwchBrepnsqboQN3auoepMFSAO0A2h3FApqdT93Zjw6jUgCYsX2bLlDVq9S6FS0PVc5oxGyJQYN3K5hMSwkKXqcg63r/GdI1WloHKkzsH32m/LMWrbUIVA7U3bkcaFOQc59xCEV9FDeJ8TnrwvVkPiB34Id/bVhBriHf2W1pHzdqxvl9u9SwokpIzX9FKkak3qEvXQtRGt3yA/vo095EUVei5vaVtyfWoWh1ERXk3r4mUvpS3B2VPy1WjD8AdtN+qLtdlx1pl6WxWdVVePewWTxya8QLvv/Pexr9vXNpvNfw7grx/CP91sNh9vNpvfC+CXYd92/r0L1ekNTktVu8EP0xFfbpwZEckcnBINddz3zuH3soPdiew6wlthjT3pjX/6w9fBeVzauOw0HjyJS6eZdBqTtw7O62YtqArLcLXv0sxTNbL93rwCzhm59uHIbg8xhjkHcx4UrnXrjePiVXEXjm+eGp62L1aWGGE4hfNzim33QNg59KXtO2Nqu2kUV+Qse4qOxjhCDr7Eaw5ZG9drUMKb3Y4W0Z3bl5iPWFhkcVjcyWY5Wy+vaRkVlCB3L2lYyoSVLzB2Uz+pfhZmv4dTc9GOLzg7c+U9B8ILtJc3/HoAv3ez2fzNLMJms/lb2+329wP4dwD8Wxeo098B8JXtdvt7NpvN76oifnu1wt1qhW8D+Bx7o/wUwLcO53cA3sW4IfADeYPTB7q/OOTx2WH7OU7K8RuM5xFfUznvHs6vVhh/oD1ajL6SSOvd4tT9Kh+tqaN1xrkD8Plqf5WfrVbH828oXmzD0fGHyd/gNFCI6+Vrv6P9N5Qv15d/+o8yBsrnMwDfintwh3El7zFtIZUDuaftvYQB+OTw5GOLG/NbjdPdr07V0E7PdSI6zqmeH9ueDmwceXQj9Wokr04MmOb5+mAndwc7yeLysZYBOd8zDnF5VvF7CW8rT3eej29WVxztnIcn7Ys/vV/h3TeHxvMGp/YcN/se+GSFo68OoTb8zycAhvvDic8p3etDhC8wdkYRzmXpL8COv+r9DwtG7gF8utr7+OgXdhi7pwFj1xHH9wd7+nS1wnvs4+J6boBhtfeDn2J/P+KS+fLYf6ufgTnOCEfVRiuy4Yj9UnJyRz6nhWyJl6qzO7PPA4g3GPf7bzBeMhLd84ryiPM7nLrpFfaiUjybNxR2h5PoFDzgyAVWGPczjHvgk/tD33S/2ic6hB/bTyAWMa325X0Le5v89uH3BW0/P2zZnl5TmNpVmKUOfrRP0z4PFBbVjq3z89o1c9Mc+f8r+eIW6f35AP7Xjnz+IoCfe05FNpvNdx22bwD84p40//H3fR/u7pbMcy3HTwL4v69a4jz8wEcfPXYVJvhxAH8NwP8M4Ici8C89YIE32Fv2wbq//h1P7548Nn7oCdrJY+D2tvz3Ak8JT9oX/8vfefDFPyUnbgB8cPgJXgH40cPvPwP2LPCSq5HDDwD93yn6WTi9HmjwDoCfIWE77P0bcOobfuNHHwF/GfsfJ/4Fdf5vM/7Ei8/Zg9jj1z9J7sm7hx+wX9D0FoHHANwsr+WLW67gW9ivE2vhu7EfrF8Vv/sb38Dnn32Gv4u9JLEG8AsBfA+Ar2DvZ2MkBkynkkLhvcNJgfgM+wv5FoC/hz1hi+1PAvgQwK/Evif4Hux95HvY2+dNDAGjwG8Dw3AY+R0Q/yAjRjtOUQy40TrHieUNdwC+uVrht3/0EX7w449xMwwTNVHVXlV+M6U3zoX4wqNG9+MRYtyOrwD42QB+3uHe/fKvAPgXcbKaHz9sv6CKKrK1KCqfxo19DXwyrPD19z/CD3/zY3wwDOMhq1aWbtL9MFXJe5ReTLMqz8HsV2qv5qP7Lh89/8VqhR/66CP8Cx9/jPXBTjT/Japuda43TUuxvaTCewx7/33g+7/fnHlyeNK++I/92DfwM7/zM+CrODnYO5yc6U8AP/btPSn8HwH8LwD+LwC/4vD7jQDe+xXYfyDtu3Fq729wkrBCInYSKE9XcXg2bcPghv0pMPw08HcB/BUA/zuA/xfAX8WpH/gUJ1uKfubnHy77u1cr/IWPPsJ/9/HH+M7fPOxXXv/k4WL/DoC/Bdz/xP62fIJa6VVfzT4IEg5zPvMN3NaBk5/m28Fp9FZVcFrd3WqFP3HwObfDKYdsEq/6KoM71n5dlzi4LzroUgleehHnbumYlxHeYk+c4vhdjBXfGz5Y4UQQbrEf6b0DfPLOCl//4iP88Acf44ObYdwvhc2H3X8buP9kv/sJTjzlU+RKL/fTsb+jMLatbEbB9WXAuLkA3sZceKrwxvkr+eIW6f2fAPw2AP9tI95vA/AjSyux3W7L7xJvNhv7kvV7wwAMw9GegJNdvYu9rb2H6ZKqMPA77G+A/mexcD7xL37fwXj97KvD7yuHH5eDNzhOm9+/OZA/8RSO2KhRMZSQMOl9DyfjBYD3hwGrYTguX+D0YfRrs8/TOXEfbjA2XJ5FdFMfvJqDHdD6cA9fAXgfwIcDTh4mbm5MBw1UMHs2vSk3ZhtTQeKtP8CADzH4KVC9kOG0xpqXgLgBRPbsqvAsHpA/54rkLo2/Hob9j847WxjMucgrnEfEoZU7o3MuTRzz1y90XXp13IrvzmtnugOwGtSwniyetC/+6psBH0bDiRvPMe+Anx727Z8JVvjqDwC8f4OTX7jF/gGFWvsF5cfLF8LpuKVL4Q/CeDPCG3ke5qdfD3vu/u6hfuET1Z+yn2Q/BwAfDAM+XA+nDoTWQtwP434oluZFf/QOVTWq7vzKO8Wx+oUbOo46R/6s00DSQvbnvI+guB0GvDr4nAxLCW8V5pZU8/1Xwqv7THZ1/xXt32LfH99EX+KW2gCjJQ8f3Az48GbwSyGCkb452UyYM616GK0igoQNOD3biB+cJ+zF+c2B4kfa0TIe+C6Yu2/eRh5xWVze8XKv5ItbpPcHsX8b+A9jv0bspw/h99if+PkAfj+Afw7ArzmjHt8D4I9gLwjeAfgPN5vNf9NKpJ07MP2EI68d0xFftoLEjXB5EbuOhCLs+C+PV9P6sboc8TMC1YMBpwan16Z5ZQJHoKdMXg8Vx+7bvL31P2KQLVeo5WmzUUIPmKHNjMZh7n08Rs890XVp7nKqdWxKTF25mX1VxBmY5gE5r+F6zp2v4rt7lZW7tPws7InjSfvikZNhR0nOjf2mS35MA4wjK+vjUf4o8QxoGjreNX4ZJv0JKwgrF2GM8KmdrmnSnjPCmw3cIw0rva12fw6ql8f01rRe2tU1vhruXnLj+HNXj/bUr0ygYEfb8d3EQfYdB9HmwkW55uL6h6wsV3Xe7/XbVR9yrbcrynI2m82fBvDvAvhXsZ/l+RHsnewf2G63fwH7SZt/BcB/sNls/tQZ9XgD4N/ebDbfB+BXA/hPttvtV+Zmwg2bnat7MFWjUGQNTPMd+VGxAq1P5Yzcz2TZ9TbsnP5giXNbbKiOYT0x0S2bHouwJaqHhmW2laW/FNSZadtxnb2zR3VilbPtia9o2WSL8PakeQ54Fr64Y+RedZKTSJqnGuNSZKMiyjfzuYvQ0ZDPaevudrg+BhL2GvPb16XhxgLOD55DeDmc42f7HOb6N6cup1j6YJNRxxyzzwZFmk/PM1YbU8GP8+zxyXPLvySanGWz2fwBAL8KwJ8D8A9hPy75VQD+YQB/BsA/u9lsft85ldhsNn97s9n86GH/x7BfPtWzfg1A3klHw1ZyGXD2WDllVfUcQeDPl6k6oD7bEd5MUTB+GcBpWkXr5kb87twSXHREpjc8a5XVcNMdXxhzBkmZs6xIrTrvzMlnDj+L34Kzwx6iy4+pOg9zDEztzz3OiiC7ND0q8HMkvIEn7YvjVfDMeHZTZWoC10NrXvyq+RwnxutouDzj8NmWVXw413cCh3c/EpzjW7N+Jfb5yz09t9G1P9cOW3AD/Yzsqk9Tv+b8n67P1XNaB/Wna9lX/93j+3tEkBLqeIHRzc4GLo5wttRZSNxIn9lPKx8tn7eO3D4m4QU632ndbDZ/DsCf2263a+zf3boB8OPn/stLh+12+8ux53F/Y046R0JjzeprnNbhBHQKyTVmJcg8a+fKjSUA693+YEfhGWmN+uqMXQ/immJKTOveQwoeEs6B7+JPJcWr8ruS808YbnmC9reu/83glizo7ciWRLSQOTgdMGkaReZQXXmteD3plsbprdNTxpP1xdxrmodxP4ybd1pZTq8O/TVtFVmGuhjXxZWevxINzoZhRm6pWAXtf1px+dGoCOQ+wtzT5gf0KbSa31wxwKVprenNCK/GmTPAyIivEvGbjmUs2KH/ayLA6AFUPsz5Uu1mlSxnebp8uDzXlM4lvNfq3ufcehwc6489UF2w3W5/FoA/DOC3bjab8oUKBxUF4pjX0/KNPWdtjw7Mopxjo6CCsg5YOwE2iCDlbjkFx7lZ7dcS83U4AvAQnbuSsEWoWkoPnhBrcet3W2t6HSFWkgv0rfXtKS+gtsXh6kR7CGUVfkmi/DYQ10vgyflidoS3mPSumTI1ycNtlVDr6LEFVjgyRifhfDkc9ti25gYOPSqdxuF3XQKOpC69XvdoeklyFl/jLCG8OovGyu5a4mtcyLkHhTFAtcVMnJhDHjPimam8LSLbU0ZW7rXW9M4ivQ+J7Xb7LvZvJv/ezWbz5+ek1cas5JdH0aH2hiqb5efADcAR1QiLrzWw4SjxbjmpDJM63wKvvpg2bqdOOH+f9TMPgZ0eZBfOrA/wsoLDI/VIc4ToipRmJDcjwhq/tw6Myg4zBaFVTvUYlpLd3nhz6jqg6x2SLx0W+eJwtOGEeVptN/YvpY1GhDDumIu/o+NQelfoH+W5+nKZsR3G2Wn7YDQ59wX90ZxLzPqY+PFn0Oa8zF2hWh97LtntfQ+ih/BmZVTlZy++X+Sdix1OTojVOhMttll3uSv2nV/XJpAR6MrHtiZrewZQD8k5HJ4E6d1utzcA/isAf3qz2fyR3nQ6k8bEl8kv4Ee2zvBbforJso6eI083EnRTZc4psSNawzumESdcT0ekOgrUtL0Eew6OSzuSckcNzck+1bxLdiN6mVFPxRci63PdEgYlsny+h+RGnEod5rwDmePJOnfIfkUaW8jSzsnzHFJ8Tt2/jFjqi48GFGvKwliJSDofyMknRqd+gT8yqvF7oB3GsWCp3LjqKSGocIx3hqFp0syvZsTcXQOTXs7TETj1FUtIXvXy76XJLsep1vbqi22ZouvqkpHls1VKNSzTWBxJ1efo4rlitJn1VK/qO3hbEV6XTuM8NJ4E6QXwTwL4zQD+4na7/Q2HsN+y2Wxm/d8uNQR2AtVay17oy2JabvAnV74SE/bnjjxzHYPv2frfHpY4yLkeBezR4JiVIiO5LJlrfldCteQEyJ9VZgs9Sxoqcp3lVYUxnPNxhPcckts6P0cFOHes80J4SyzyxfduIBvYnTZd9147fKcO9KRvIWEEGdFdbDcz/dPS6nO4utiMHPdUjeP2kkMgJ4LnkF09P5fwVmACrMsdqjTZet+zQQ+Hx3nVuC1TcSuSGvFdUyuq1G2nPfFYzHloPAnSu9ls/gdccGloCA7OQJREZDfaEQcXh388YqxGWI4Yq6PVslPDObS69SFD996G1kHxUARZDXnEcVWt2WHaYoPk8oO6JGPpmBrle99TBc2yteyAn9cctdfFr+qmNqQDqaxTPGdscQ436SW7Wdy55PoFeyz1xbv4E843MJw2bGPW5zjnGJH1Xz9Go5BlFLNYnDnmF+741CKfOMcwD8jUXD12l5CR2/jxDGg8oniRLeu3etBav9siqVk+c8kuh2eEV1XeHmieXWmXLvw1JCD+i2tGUvWcI8F63OvXM1vTfe0vWv3HEvJ8KTwJ0nspuIbOxKGl9PY2+IykRhgvNWt17G6EFWDC5JzSKv6sTqSX886Iw6VI7VLcD8CNY1atG/bQOBDsG5Fq9UsfGXqWFy5Zq6vxlUgvXdaYOczMgWm6pZhLdqs05xLex24Lbwt2wNS5kBPuus9uxKXOPJuG6K1kS42QooFxO+B2WZGfia1dyK+56mfEIiPAcbxEWavSuSUA6tf0PIej8/xcwpvVM+L0LHNwarHNfw6bVmTMtYjGUTIS7I4jLBMFFdq0nc1VefUQ3mt1/W8V6a1IZPWZp2pAxg/C2TOLEaoeu/LVEYHS65d4HDlirIHjv2W7uRuXE2Vk11ZNYZyDVn7He6WjEtcqeG1H5m1bQ8oeMKs93Oy5xLK1pEGPe9XbVvla7pJ16i7eOdxiTpmt/OeQ3So8I7wvL7JdBgOwd2DvHbbyORknRli+yQcRieVJ/sisY6Y9yFiDZKv7s6GJD9t7yazyw71tQ4vRPpCv5TUdA6fPbp0zKMwIL2+z8+6cO9+TT1YPt/ShWp+7bsSZhRYJzgxsGEfhrcvChbnm5Mxf26Pajiunty49hHfpIGwJ3hrSqw40c1Z806Ox6/keB+eMifPLRj1qTDoCZ2QNe2Qgh38Gzh88zwyrhUa7K1E1APdb80PSh8aJe4jvJbBQLnUKvFtq0LNW1+1zXlyWI+VaD4Wz94DaITvBS4/Ae27zXLKbnVuSzwvmYwecRu7xybII23WSRzW+AWPCO1BYV4UOWFP6jPAeynSdP1eNs+wqfoahtQiuq1cmrjuRPG5j3Ap1qUsInrsPSkLZ7+n5c77s0FrukC1x0HQtcqv5rCRskbg7Y7prMFvXZTrfnRXXItFVlZwgMjSOXR4u/Bp4a0gvkDd24LJcyRkZMDZCXd6QcarKUG+n0Ufp1kDa6rheSpiz/K6FXfzRG6iVUebnzmW41lxJA0qAexRbp7pURBkS381qVM/dKbyV83pIzOgLmuEvhPd6uAO8MzM3O/ODI5+wwtRHxOfKdnS+ms5qoTBuRzADK9m6dJODmUY310adG+VzTv11yxBifJChIsgZgc2IaqX6nru+N8tPyarGyZY7ZIS5qqONpNhhPN2ko5ndOHiOXWREVLcRx9mIVtWR1edEeIG3jPQ64ZCJxJqOj8po0ctWD0QNg4lu5Qyduqtbvp4monWuTodcP0d45vLByqFm+TmuOrpGVnH0pmSF8I19ROYiM7eT8KxqTvXYYUpiHed357MlOkqINQ+HTOXPnJViCe84dxahOvdCeK+LAZi2ZxqROX8Z25FPYF/g/m9uSJXHQgk9DzdLM5zq6cSMzDVVMyejxBE4nHZb1XXnW4SBb6G61TsJW9MPaBPeDNnyAWB8f9xgoXcJgzvfItAZAc6WPjw6EqflCK92l0w0BznuyauqUpZHFl/RS3ivpVO9VaQXyDlUvPCryAZirQeg5JRHzzoNofVzdXwteVQEOrACjssb+EKcYSvH3yXx3ChQ0av+Rf3V5++Ak2Lj2D+DmV+m6lyJ4fQsIWDMXasbcXRJQ3ae7YPrxIO7OXCPI+rBcbgcmDiXwBJC0KrHC+F9OLzB4QVVJr7A0aC4eafPiNnZivYjUZBfHcU5hprl746dI5S6cp0dWSyvx/m1pEpVHMOdR0W4X1wDrxKJ/fhyQ7Wmt0KPmqpbR0TnqLp63FKRszrp5Kgqu64+zeetFVoK0yFXnCLrs3Vg6cKrNBreo/JW+WT9SOxfi4w+mUHOJeDIpJK70cOZuebBrf91TgbocyBKnNlJVfmN1GpZlOTIbRxnal6GS5AErf/xGagUf4lKPBKrcQ60cupZHopKEWmFtdK2oBxi0naQt7Ol6MmnOr/Ell+I8GVw9FWGccVnwKrntnNpYz+WNTBzy3rnqoJahjnP/hdJ1Cr7wFG5NmjZqSMKrg4tYcL1TVl7dWpthh6ltlpmsDb7kUbzrvzqXMJbxdXzumrQEfi0jIw9V3AssjA8nX1wJJKzi3DHJ9g2IHEyMqtVdcdzCO818dYqvcqp1nLMRsnKWY+Tc6SUw1mpzUZMSkbDlwOnxn8r+VknJ8sbuBx1anyuQnVe6+CMuSIYtnNUrxwVdspupvY+EFpqZkshcUsQdnIuU3P5VuyoLi6NqyPH73nhQh2idv4V5qrgc9DTHpek3eHl6w2XQgix76vj3XkSaRUmliTDIbLSq5LlXGNz8U2Y6wf0uNWeRj6uGjmib+yfVZezd4JJJgKxT4rrCB8zd4mDcrw5L5Kd8yJblVel8Go6R3KrOmh5sb1pXUyGxsNXH5wR0YwEV4LXkgFdy6e6ctx5O1C8At4apTe7sRzmwpeoYK5sNbIeYumckJL2Eqa1ZiRNfa4zuDl9yJy4SvJ3wHj9X2tIqcdO9r4k1v6/3JloE/Q2qEqRdevgehQODmupGdny6MlzkrDMNtWeL4HeAWiVfsm5F8yHHcwKqo53QhJVDeCX2JIlFBO/4Ap0hiqKtL0uQnefoQN5OVWF9ai4Lr3WV2+nc7dd0/YCRxCdWjyHpLZU3Sy+LpvICK/WIfPVZgJ1UvcHAdujhGVkVpNqds63t2zHma07zqpclZGdvxbhBd4ypdeNaLVxj252J0PJfKeOqncYq7LOYToCGL8YYUc+nB+QNDqj9OrUh6Z15fegJ56bPtF6Hd/0js5MbyZXmKX6nQl/BGRVUPtyaq2L1wpz64GdahxwynI6UyD5uP0sXaZ8ax4PgdbjfyG818UbHD7TOwDrO5zeNdj55s04+kRWc4Hpkgb+xadt2CfE8RwYQ3Kdv7YDJUSa3RB/2MEP4ypWbYvjZT5V66nn3C/crV6He+FZkQ3ys+Vceq5FIluqrsbJyGzPUgcO71mNoNWisFgAACAASURBVEsylgwUZoEeajUDp/uVPbgtTNykGpN0ap9V3k+F8AJvGekFpg++utlA/fZt5qQ1T37YzM2yh8mGpFNQUafIR//L5ohwxRqIROnVuvZgKSFoNRwdHEymLTkCe+Ber3IJJnMGoXbLDfh4MPtKanmJgC5zUAKrt8fdLg5TItyCdvS9HSLfuktPI/U8lhey+zh4g/3zeQ3gfWFj7NtUgB11lEFyX2OsHMiXG0YvzDlUozTXEA8V1NkNl42SpKr/OGbinHxRRddn6bYSFVyxcftiy/WPLiRcb4WKIMa5HqIJs89xMCNOlt+cesSxu77snmRkfhYG7NdYNRxtJSZl4Wpymoczx8w855BkjZdxsB51+CHw1ixvCOgISB/80ZktWWxOqAi1K0+nlVycCTFMyjke67CzqJ87X8GN2noxmP2JYsKyQ0vSmFORuRWeYQPOZFoOL3PIlVJQdaiVauI6A113luUVqG69U44g5xiD/JagN32LT7wQ3ocFc1N1uk590gHVoBH5v6+Rr9gNByFYHXzl8Fx4YVBaz4oAA75t7biOu+k5V0YvHBHW/sIJDfpby2/OVD4TxMz3uHwqguqWL/QucaiWOwDTZ5Wp0Zx3tla5RMaYF3IN/e99gWwMldkqn4eJw+mqvLN8nO/Pyq7qdQ08e6WXO3UdULuOuafz7e2gldBG2SFUtoQIdUqxjQYXx/EPjmyjixa+Ph1y3Vz0bASm8SedUgJ3nREWqiRf32tgLDvoCMDJ5Cp1ngO3DgGmzCJJTzxVf53IBAnjmYKwJdA+x4Gc52MO07w4bI3piyuV81PFWG+ju62a9pLoeSYvhPfhwf72/g64YSOWOFna445Teg+/+LTjq8wpVVIYsz0ufDit53VcWrN0aqathmOdwziOa1uQqEpyIfF0X/sXJcDhQ6L+Slp1oq3X5SpRjGO33haY9mdLVN8sP0euW+uNKx0su6YykquYQ8Zcd+PTmR1k/bkOhFyxPeJYZqOZfaodZ/m24jwUnjXpraaWnEI08YeraUPMfKYbCQHeXtnms9FS5piY+AbhTZ2OGWpnpCdQjfCyOIrq2quRJ/dfk/W8elPdBfONuQTxBZoXmz1HlzwjuRkRdgRXSa3mnS2FAB27Oga57b1tmWPNjnVNYHYNl0Cvk2zFSweSL5iNNxh/bGFNrFF9TErU9GsNso73qPJiv7/WzFwBwPQhF4ZRkVBgqihm6Xc41Vudew/R0H3eZsRciQ7/+P98hM/gXzFpmBJN7noywsvx3azTuUTXpXEqc1aXTOV21+RwUf+RjQohdoWxSbnwgBtIuSLYlmDiuDbr4rk2k9XHpb8GnjXpdWg52EveZCWu4UCqkTmHq3NTw4u4txRn0siS+aXMMHsVywxVY9Aw5qaT67vD1FtnBPRSbOlCcPewh+Q6tVeJryvHre/NymJwWa1xglN8M8eq6bSsiKvlLSXBc+21J/5DqM5fZnAz3gFY04idw6u0x0jxzyl4je9u+s7rWp1c72hdC5fTOv52/mwtP1s0X7iJkJWxBJpX9tNB+hr7f1LRs9qvZy1z5Muk8o3kEeGat+bh8u1N00t4NX12D7KlbS4fW4mFaJHILLwlWlRxHT/R4xZ57bHjVh0fCm8F6dXZKv6FUgqc71AYTvXlqaPMqJQoa2fhHBSrvyPiy3MtRul103KVsWdh1XVk6TInHGqDdmijG5mxJZU013L+UjiUc4N8TRWjZyDhiPDcZQ5KfIHxbWAiPJg4+gIL0P9NTucInbqrRBty3uV5KbyQ3ceDflzh1eELC/fDeMbNdXRH0qfKqGTKQvAuEvO0hytA4QxgN1VUlaSzXWfT25z1m8jEDOzVt7uqKxHWgYP2H5yX6gix5Vt7C69m6qx81V6cIqqEl4+rNbI9JFfTuHit/N1a39YyB83T1euGL3IJnLENp1OOw7hnr1m6tI67VNXKOEOWr6aHOf9YhBd4i2f33AOfPORiJGbjJ2UAuWG4h+mmHLKpqlb6I9bTOJre1VGnytz5FpT0az35eiYvu/AFc4ZZwVnP0IszLD5zkBqnKqpy2pVjduGuvLXZr9SZ7HZkgzqNk9lX5YQvjd58Xwjvw0EH78dAieMQzf0+DErJ7w7HpQ36id5jBi7TVhwJV2I+uR6B8wcjqCOXG9Bjsz2Xpm2U7w/7dq5KEFL++E+1TlnJcEvEdMtA+Dhb57s2YZrGxdM0vYRX42iZ2XXa8EuyqYZxZH01/6p0rnlUvKNSeXvKeCqEF3hLlF6GPvh0euBgtU3HZeAeWhiMU1qzOqih8Xd6NU3qkKT1OzWNB6EtYqJ15LoqWp0YZBvXOlJ6d7QNqILLUuY5jqUlyWYLeDuzay1xqNTelrLrwiH72e2KdKq66GUrMlWBkam7OuWbrTvmfHoxlzi/kN2HB4uyO+xJ6nrnCZfzgeEOXsU/oZBMX9MhDlG+mhkob9dJHArnf0qhAzxHICqyFXGP7y0IecduKpaoEp7ZtxIPjavHjnNzHuEPWPXlc1oPRyydyquENyO7MPtA7o961OBMPa6EhEr15bxcWdZvzXFmDOOosr7Uxcuya4kCVT+eaVFZe3nqhBd4C0kv4EdBgHFgiXH2CgfO8QQJYSNwRFQNQR0h/26RIFrpahzEaaMuOuV9DpxBZ/dM63PsuL7A6VVsbTkBJaHM7pY6lpm4WQGrYVyNqEp2zPs9SxguSXzjOMqJ452Ecb1byJyWXnNGfjUPZ4NziWwPXsju9cAvsgXPWw9ToqtgZXIHjJktfbaM/ylbpLO9eXWc7UuQc0dszzqAdNgBY6Z+qGss99D89ZhFAqfkalluMKF9FPcJUf9XctxDQDN1NiO8dxKXt61yHFppW4qvm/nS63HLNWCOXfm2kgp+WPy/0BNn64gvP2NOkhFOtikXF+ZY83BxKw6Q9R29xP0h8OyXNzhCGVs36jjnxrb8qRMaNL4brcd+9ivhWqbJ35XDdcp4p+bXIrnuHuhv9B/Z1DtrgU8QldOrHClvWw2vNSXH4c4pO0XGdVSu3oyWg3TnKycc5x/y0c7J/4ma2LODI1rY5Tbi0h/9AvfOh682RPBkTa9WAPAGcDina/SDhGa+u6pz4XpP9ePrGab+05GUnj6Ks+X8lCxzntr/sNLb4mgZUcz8hlsn7Ahva9mChvWk5fNa/6xOWucWJvF6GbqDs9WOQVl23sWputZsYDVjvGjLqhTeLM018NYqvY5HuRvbw/orVVb96w7TZQQZWXCj8QHjl+8ivp16YjazHl+Pc+TAOJ+sYbBz7DHGTLGItKECshL0eji87NKqbNzQJehxONW8u5nj61V4ndqrii3HU/WWy2gpvnwZcV7zCsUlU1R6X2hzqrVei6q+kDhVXksxl7y6+rxgOVTlHTAmmJVaFL5hFxnJ8obX2E8MfY7x572PGTBUVTAPOHs51XX67JbY1bZsdQCmL+vSIMD1TRXJyIhrVu/Yd1+FjOUMtzgpvdqVxEuvru+oBtpOCed07t7pI8raZK8a3BIeXL2qNctVvbvJ70JUdpGJUDqgcgMtwNuSIhPplNhWhFzrnJ27Fp416eX1idzB64OKjllHx5HBUjvNnGLWmWejeEd+NX+NP3EA6+kuky5HpqJOGVQpyOrNcbVB6b3nf7T06k4iROX1ApnxgdI8FGOJfIdpcEZ4Gdna3iyeI7FcDSXFSnxR7MdlDJg6di6j6sizzhYUxo9EBztcXkU2r6G6PoaT/TJgMqgF8B7aZI2J2WgdLAB8juMLbGalwCnTNcYFsG+QHlfbQaaKclJnl0rwIHGH+MPS9M73T5lNVqSESbmSdD2n/9yO638Lv6bXLVHS/WpNL/sX9gE9a3qB3Bf1xq/qzGEar2cpg5Z/4y6qVZjCGAEPzvR0RnJbYlVGTitbz/KqCG+PaPZYvvjZL2/IoHK9m/Fy0FHzyIlJ/pom9h2xdI5O65WR37LeZk2v1imOWw7UpXPI8nGG7qbYjmJOHKgUwQnmSM4V5iwa60jeta7LnG9Ns1WdQpWHUya0fA5vdQoZtFMNVIoDn9d8rokXwvtw0Pe1MrJb+Y477Ekuf5uM84g1vUef6ZxW5shEdXb9gaunEzCydsfYAeObIgVm5DcbHGgchbuW7L6vzG+NSVcCwA+KV8h5nBJed16VX1cvl6YnvsbpIbzOfyrcoCDFUlbV6PQzm2yFVX2/xuNqZPbT8qMtfpDlcQ3RA3jmSm+GrON1xzcqrxVQo3McrUfRUnAnkXE9Ve8muJmWx2pjpThqfC2Xw6p+RvOK8FAN9Fuex/l2N7f+UCou5+8qbuzhZjUedVeKr9tXJVfTZ4ovD2CyPDJhHJjaov5Htkrd7QVfKyv7ERZ1dPXi9MDDPPIXonsd3MN8wcH8gGlnykrkawDvH/zB/eEFti8w/XrDzmXknL0YG9ujRo2t1lOz1QGktrNjWq704aY4VTYjLJUYMZg4TkTh5/Ea4z7hFf0ijK/HuUhHFFnlhYRxfj3EsfIBma9yxDpLl4kOLp4+57JOl5QP6abr4EXtVO3HHXNeum35x6z/z1TeVtkazsfpC/sXxrNXequRdmUAlwQ/eDUkZzTOwVbENzAxUjf8lfIqdUDrx+W04mg8Jf8aL+ow6rz4a/PVvEqh2nRVVNHrPbOw5HS1fGBucVWH0DNF56ZfnZrBCk9VtuusXaesnS4wtb/qcVe2OgeXyucFfaBlqymRc1C/cYc92Q3Cy0sflFQfM6imEUxFso7cxdFsKkI1Sa+NZqjL6/HVGVGp2ibXP66B271bdpD5Ct0qoXUDAjeb5Qiyu7c96q+Ga/rsOnqXWrhym3F7DaVAxl16+uOsD8+61Czc5dWTppfwPgbeOqVX1VfeThwKGWZlk87g1LnvJI8dZd8yJHV42nns0DEKOgzL4+snXM9s+kYJt9a1x3CrfSfExDRldG43+tYeZ7DC9MZqnB55sEfmdhDVVxWdbJIgU0jiUjKldijiIonv1FR9vpxGOykV2SOs5aMHTO8H58Gqr9af84i6KLLHte6IMwfXmlJ72xGKLS9hHWQf8D5FCe1dEc7nutgrnYvv8WbuwPl0nbHSpQCZ+7kD7EJkvS8tEgyKn9XV9Um85ZfZQPVnpZfbJvsFp9ZC4uoAW9XgigCDzmWYKxxkSzR43xFxJfPVrNioXJfJA0D7VLadjKPMUXMzu9f8e5YvuLCMaF8bz5r0VmuHMifr1NKVPK3WyEXP87SSIwCczhntYPadk7PtiT2OFN4jiM4xbDegcHm4e68zffEm9i2xruPnCpnJMZvj85eG9oQNopxFZ/LaIri9xBcmvkKJL+Q4OjKnhDQmDKy985bJL9eRiS9fE9fN5VPhUo4yU+5esAz8nd7sP4y31H0ltpHP54ff68MWkVc2rcQwD1gHYlk2auearRK6yO+YRtg6fx6Nya8Lg+QHicNhLg0r55x/vLT2CqeX2EJQaXG2jAC7ZQGx31Jis3NV+Q6tpRKuXL0eV4aS3dmVm+vUpPN0zxzwNpKRYI6ng6TWoN/ZlZaZ1Wcu4b1v1OVSePbLGxweSr1Z0uFWioKGaedQdRYZ4k1SJajV6C2bCnHnXJ21PE6nzlzJLzv+e21RPZj7UHq8mmkVNxRWOXINazWwbMpN862m4jKVgrdZfnOQ2SJ3uj3OUPddPg+Fa5TxZQST12xw7BDPg0lyvLCm64N1rfCogIpVHwpRO834cmWn1eBwklc4vENhPaobl+vIDOfvxIbsGjg+K9X8y5RNt35Xfy59paoqMXZp9adoLX3gY06jdcniOOh9uXGR1an3YEajaYlyGuZ8njt2dpblPaduPXGu6ZOftdILTNdRqlPTJQeXUop28oswx5+yMnmUr9uMGE/aGHuskPLenOJrlEr9dSoCn9Nwvg7NR/OLzozVoNeYOp21u+jenuahUKi+1bIEl0VPHKfuclmsUmmaHca3KuIPEk8V3rWEVXC3QpVdp/hq/bgTZvB9udSo/IXoPixU6VVfVhE+JrWf46Q8smr8BZ0/tgknazmW2gFVdZ1qpqStUgFf47B8i0b4/A8o1c9nfn+QfT6vaZzv1W1cxxrTF9kciWztK3ldyX6c4/x7RANXZoZKdHD5ZIQ3U6kzUv/QcF0h22RGZrPm4ASJakDVEiyUo2d2WzVPjXsNvHVKb4tgjnCw5ksYcA+Z7hnpO7J4Di5tcFm9uM5uq4oOf2Se63DPiS41Qgks8aCr/LDlBCvn6sJ13zlgty7OKb6aRzYVmXXcc9tE5gCdeOFsJwPbzlyck/YF86BkqyVcrSWdKrruxTVdL3zMAMj9BRmiG9gPmGerjgi5thK+jae0shk3V05Wxyy+S6skmOsdv1jeUImT6n9as1OZYsxpnILr1GeHSgF2YdXyBRfeq/pOIi0hEo05fUdKXRxgajNV3F5kRLZC1X6quNfCs1Z62dacoquqF59bCnXm6pD4IWZtwE2zsePXEViEsVI7erFNvNKK0mh5Dk5dcM65GnlyWnduh7HSG+v07MqCHaZv7u0kciYfckatFqUKbuOYP13mFFgOZ1XW2ZuLx5dS5Q1M81fFl6EKj7tUVq64XcXkgZJZvbWs8PYqvlGGO3Z4Ia9PF6z06gttMNsA+9BQdEN55LXBvKY33n29Hw7vAVQMO5lqa5EC9b/AlOxVsyJxPa9I+lYSqj5W+xPnQ7XvGCRdteU6h8J7S2GVsslpdfmUC4fsc/rAuYPtOQpxJibwVuvq6sf35YYPWurCXIiBOlGpiD4Kc/206+91QOjiZgPEJeLGY/nzt07pzdAiuy27dNMImr+STHVKrk7A1Oi6R1eNSlfO0+1nYonWX49VTeB7wYR+wKnjyr7pWSo4l5K/gbblF16zpfa6x1KJAZUSEucr1Vc7LZ1izBRlTe+QqVhZWPaotGOHhPPxuQPTF1wf0ca5PfN0PpA/U077GuM1vZ9jvLRBSXVT3iJDdLalJDTCMr/tpuizgeZrnC5kN0zzbSm/Sm71vNZ/SI45/1B3WeXl/8iWEVHnDh0B1jTOXzl/Vqm22Y+RKcQZ0c7UYFcH5yMfjDiRIWZ9cWy1z3QcwnGJigxHeMVDerrjp0p4gbeA9PYMohwZ680gI4gcNucBZiMlzU+NuYmk1bJhZypCj9FqmgyZMsENkjtH7lhiu+iFtjnoZZ7u3Ay4NW18nDnRnqm2zJG7S3MEWMMjn6xTcVCy0HpsLSdaxX8ovJDry+ANxgNcR8ocdpKO/YNb8hDrhSeZuKmzwiCz+vSqaE7V1DTH5Q278X3J7slk4I9pO+n12xmhZqU3riHU3kodBTz503wdCVbx0/mYFqnVelTLIFwe1eBf9zPy340lym6CTDBbirn+rsV/GK3Zk1a8a+HZk15G2JqOpIH6gS21Ue3EK4fG8d1W68v5AXmeAMZPkfYrwqt1ck6y1WGpmq3p9J7o54y4E5uU1duCelE95Bnnsq849EyZVfE0rusQIk6m+nKYU1kylVjzcnVQZCN5p05lHbXr0F05PYOtOXiIPL/sYGLKBDa7x7pSiZcxMOn9AqelDfYfVLTUATLMTC2NOnC4s5FsOt+1k+On1w47TOidf8x8qO5rfZ266/qiAVOiyMsbdJmD+qdMWXVE190nYJqvluXIbIvgZnlpfhxX99UPZnHT513dpF5yoaMdgeu/M9OveAXnx/HdACmLy2F6nNXF5fVYeNZretfYKwwt5q4P/3jjJeEc8ttDpneUZxavIordlQBGlV9jfJ2R5won55c5/FZRPUTYTb1EGHdmsc8Oa0f7x0QP+f8Jo9DsOIkb95KDOawqJuLx9YLyAJ0HpWvFc8ecnr/TG20n9h1pbsHdtjVONgbZ32F6zXye83Rt0T2WXkX6BQ+LNxj/97Td4RjI1arwQ+wX+AsNTHbjHQD72TK4ACqECuc2G8nUR1XZKnFjFVM7+zvsK30/nJZscF/EZWZEgfsE51s53E1z64vCUf9Y1qDrehncX2SE1hFNN9iGCc9wjlCakeLs2BFi1ZDS+qjjdIVllWghcVqOd2QDpVbajGe3bLI37CkSXuAtUnoXN5TGHZjTqaoDjbCeTldH55zfLGMx16OjMZefc7Qat1qKkTUgp0Lwuj1VJJoVekhksqyg+mYvhzkVNour+9W6tEr5rabwXOeUqRwarwV1qDprkcXvOd8qt/V7wcODSVbLf2iz4gExf6uXybAOmkcF84NWh0mOWF1KNXB357M2lQ3QXuP0Dymy2cfK77aUt4ygZ7OcTHiV/Cqx1SUJoDzcxKLzE1mY822OQLfQu8xBw7TuWVhFDez3ebOCqjAgNcQ5k52t7tHxkrnI/PlTIbO9eNZKL9BuJJmDYWTrfTI4h67qW1YXpziro6umBecg8ljJfqhxCi3XERh3rGUqWQ9lTz86H79XmF67fQ58kx0qlTbAyk+vNNuK21k0x3NKcewD3p74nuxMXFZ5VfGNONqZqWqlnR8kPucX5VRKbuzzDIOe42vsVX1f8LSgpDT2gXqAo+liFmiFk7Ibyx6+wHigPEQGakS8Lw2T/SAjGyQph1aSxe3nTtKFQg349bwZT3dkVom49muun9N+hge5/BLbzS2wvsuJnhLSTPFdmX3QtupjL6G+9YqsTt3NxIfs2tIMz4UYYTWA7xkU9Qz82b6y9uny5mNIPFfXp4K3RullONUJZv8ScOrnHGROTMlvs97Go+g0WmydU83qpVAjzxyuO+byq8+zlRkswVzWVMkDtO8aTzbb1ZpGaykSTsXI8lMnDRQOW/Kv6pFBBzgczmEuTo9zvJQZvODhwG2aCS/gnx/b5k7SxTaIIy+XiPCRnXBv7ZzQYZsRhIxkqi1mbVAJcOSr9VffrrN7fH5E7KWuWb/mfG/83BKF4/d5V57oqVKqRJYH0I7wqs9xM1TOtymcGtyjELvwivBWg3wLfeiZPJ5VYAFcP+kGT9XsWcUFIt5SHqP7WV0cbmaWuRTPmvSq0aqypbDEqhPVjdJRknNYVZlu1J4ZdU/d9T5kZMOpAhw/U34dWmSX82NVR5c4RPr73pZSoYcpZscuD9p3SxwyRWMO8XWdDxevBNWRWu3cnOqicd05V0dGNs3lOuZzia/m+4KnhXtMiasjjg5MDvnTZLqm1/mM0sEVDKClrmq4tjmnaGr++lIeL9OoSK1WORMPXBqXf5yPOsc63vjhdvzZMoX6AncvNO66SJvdy14y61Cla/lNYOqzdd8W6I6zGzgT90Of8BTI+ts4p9ynx4+2VNyeevR249ckos9+eUPvsgTnF8P6l6pb53TATiFmBSDCZpdB1uNI9M5EbRlmRuhbP3a2nBd/vcGlmby3NocAr9G+abpUgdM0ljFo/J7onMQta8iWMWT3L8qNNBxf8+T02fKGnk48zt+Zc1zPgfLemTDQcZyH7EccwDtDfby9HaPDC4m+DHgwG/7hNU7P3/myzC/cYkoWmfha35s5S2oo7FvZ7gbZz3ymDiQjzJGzHU7LMoDx12oqYsrlOfHDqcMuP+eD1xiT2zjGqz4iqAPsiOOWOgDelyzpa5cgW6bhjvU61Xeqit1cz8uJ51ygsd9M9Qe8yWtY76DT2aHmV4kRWb4tPIbq+qyV3h7oSDpDZZ/VIM45poqsqjMd4J3cbKGzYP8ZQc+mpbN6LCEIqkByA+NpP87/WK9W4Q+hBjO6h/19yoErUhUJzdM5aqdiuDpkdeN8XIfmzmfIFAA3yHKPsHW+5xG32lwW94XwXg7crrPnz1DCGyRZ/YIOkCdEUR+mSrhW7ehHZX/ZLEkU5+qrs4Ia11U3U8yrtqe3g9XOILtHpXfll0PptXK4EloeCOj5aqDt0LvsQZdIZOkyP6p1csdduJC6e0RhdG7yomf2zMXLfKAj2Jpvb5kVHot8Pmult/emxcN9yC9fhbOplKnKgWYjeKCof2KdK3Pa1U8VReeMuXyYY60z/5jw8v93jw4uOjVWeCeXowEq1Tj0qL2tdJn6S/vxb4kjKJJo8S7cKb4RDowv2ym9GtZafrOmbSDrLFyHdkf7lR3Hdeq+qrtOEdZ9rj/Q195fiOzjIMiVvqga/zLYgZ8/q7kR7pTeyD+thO5T4wq/tMK0TkrWVRBwsyFM9NQ2g7zzi2zZ2l436Iecg0nHYbyvhFuVWP427yvs/9ysgNVQD6LdtVf7Gdl19yvDEmLU6ho075aybaEX2UzQwAy1qyUeuCydbc0pZ66+1Ir/mGrrsya9gV5bG5E3Yg9Vem4IqbM1qEhwVrdIp9Nts0AXw44vOh9u0NkoLStXFYeexseEl4mN6wTUeV906ssR4YwcZ4zU7AfxdXDZVMQXci6QEeCIz2mZgHM9+Lzmk6m72gFmbUCJuF6DEt0e4qt1hMR/wdNCtFldc8uDnoAjFZw+bIy/3MCEdyQKZAyRM5YKsB25ZC0ft8a0rSj/2WFM0N0gXwlqJny4fSa//OPy2acqMeVv9IaDXlMGOjDISKwS6pVsAe9POPyhkanWfC4jvHZpQ0vZvcCFZQMwjeM0oaxfz6C2ped0v6XytmZHlpy7JJ59H6Kd+1J7c1MxbkqkumE6Cu+F+m1nfOdgjjGr8ToCrOrEDtNGCkzJFDs9N9036YDm9kY9yAxkjuEYI6icZlVUz1RcNd2nHW+WZ6VqVFORLr8MFefIHlf1SF2aJe3rBdeBtmXA+w9g6l+DEPJWSaL9cgMXDBMhMby5Spers2uXvO/WJSth1fbhlLgWn+d9vt9RhpLRCTE9BKrvUSKLZKt8r+J/OljIzp3DG6t85nDTReRobqJGP6bP2PnTKszl5WyFkU2u9tSxQnVrrjUAAp650rukYwboIUmiLI8sXEflrSnmsi7IR/3cgdglDsCItbBixqoaO08dybecrGtYrnFwmCoLqvbqtWZl+wtvIFNxuXKD2c+UXY7TW4YkrbKGZK+EABI3oAOMDGEHTq1By+lL5AAAIABJREFUcc6R4dbAT69NFb8sDBLujgP86F7w+NDBb7kMgcC2H0sCwhb5Kw7xm/gMNSTIfhjb7pTGRVdfrsTgldTZtR+207iW+O9yTNjdvyJ2BFjFiowsa131Ot7DWN19RfvrFQV8Mb4W5+5UwFD/kYXpverBpYhQr/Dg6sfXO8mAO7gWHpjVVeRVOUQPMuGtlU/Gc54K4QW+RH1GNqrBqu8mtDp7V96c+iwSLjvkCo2iigLvO0NvjSgjfVZ/doS8rpfLK0eqSxVdh0u0LpNHvM3b49ydQw201NweFVg7nKxTVhVH/XelDut1KLKBkdpe9mh7FF/O/0X5fRpQdZbDFY5I8LII/k5vHMe+LTibJjtUhJcgZeqZy1ah0/nZtXB19L/MVdVVAsxhrn5u+YMud9CZnJHPoM85ONVaFWJg6t/U13CYxsuU8t5fC600rg7umlxZN3wzejCX5Xei6q/5PJLzLryHr8wJZzwlwgs8c6UXmE9Ge0YiFTHpUdRa5VcG5JxenLNip0YkEq8j/rhXoXa0GocqCBzmlj5wHkrU+G3hUAIzpePiJEZV2kxyzZRdp+g6+dYUEVtWtFjthjlmW3T3Qm1Qq8xlc3xtK67zdmE9UIU/6rU2+1r3sMWVCc+Oe8p/wXXhVEw3wHEkaEfpI8z9B8eIe8yPpg6Y2I4+dL+a1qG6hswXOaKrhI9tj/+7HJN49Z3OB3JdAuzLW1PQEY8Ht68O+6z2niTf6UA4I/1x/aC4OnDWAXfEbamuXH+HJW3b5e/6e32GswhZRhR6KqxrWuTiHS9wwkKrD3VLZ7TYyq60ek78UmSX/xhkN/CsSe+lO7dsFBjnsilVHlmrE2dUZFdHbzqKPwfsACtCqSQUyI1+J/vaEMLB3ZofE0DXmIPc3w/UeVWsZ254Cy0ibHoE/ZJDll3FpZX8RvwMraUN+szZPlc43Vun0sRWla012tPW7vpWGN9SJbkwYXOJr5bfg2v9F6AvA2Jwx/9BjZ87Q6fCw4fc4WQD7usNas+ReRDesKGj7zg0OG0DTlSoyIAjcUp81Z7jRbw17asQoSICkjgazwkG7ufU2vjFlxvCKTtVNLb84zxV0XWEt3eGyJV9aVTXyOe1/vbbvBmxzZx2D2HZnTaVQJYks2Guf0aRv3KO3sGiYi7hvRYRfqtEkUUq7NobtHNsroxLqpKqMjThPLVcCxPyzPjdMYdlxLtVT3WW8Yv1cZqvI9gPCp3LW5r+YBTZMoeqWBdHB19V8U69jXPOJ2dOXvO69JRU7zKH1nO/xCDwBQ+H8DPZwEht0RFf9Vms+Fr/tTuVzdt7kUrnKFSJ6DYhuNnMCJN4/qcUSlSVsGZqnAvT63FEyamwI7JKDHZy7gAdoGRxuEwUcZR89/zOhctnth/jC8qc/BWY25x+OfOnS4ls1oZ68diEF3jmSi/QTxB68glcYKC2GOz0HadNEwTWp2uJPDJFzTl/p7xmRbn6UjVGzjFU3veoPk7NnjTkS7HfQqUdoSXLOim3IztVcTVryHkNz8D5VVBbCKXXDUqccuM6DCU2quS6a8jUWg5nxbeK7/J/weOBBzP6c1DfrYRZlza8lnKAg6K78mLBKiKv8ibvBv89Hbu2F9cP8TrkWNbA/5HN+Xin6jpirHXUPiN+saRB/TB/ozfU3h7+5vxD5juUH2YDdIW775dU59bJvlN5mxlcCdVAraXounganinLKlA49Kq8T4HwAo9Aerfb7Z8H8FXsr/WPbjab/2hpXjplOhts3cPUcbFD420GJhVzVUt2akDtcJcg6paR+0pZ4I5LnaqDm0bTJQ5MApsK9w6X/88iTG4dEXbnXZiQabfMISvK2UpGgKvLYGiVOExt+x6+03JKDiic6585VyX5QYSVzGYEV8PdtWqaF8zDJX1xIJTZ2Eaz5fat0+3qCyKeLm/4wpQF7Nsb+01tbximdpoN+PU856P1jWNessVtZofTkgwmFo74KgnWviCbKdG4kGOuI7fz439jMy+yRRz2Xzr41TDnO/g+cZoWWnHm9o09ZCsjvCsU3+bVzM5h5gVJ0L7XoSK5nIfaUaXmuvKzfBm9hPex/PYlB1C9+LWbzeaXAfhlAH7ddrv92iUzn31B69FGg0fH1QjwkiTVjeLTiIasMTnJFIXI1xFaly2SMHXaSuDYAfKncjI8uSUOvWEEXeYA5OpClZ1TUtxP07iyXfxsKYOqNL2dlcJ11Lqv8ZYgs9cXNHFRX6zLEgLZs3GDq3iW7h/XZP7Hdcrxu6fKlANrU99KgNB24dpXptBWhJfT8lbrr/tRT03n6jgScEKVME7IkdzYz4hsRnghcZb4tiXpM7JVEV4NHwXozXQJI2wpuzo8vF5SWp3P8mj53KU++akTXuARlN7NZvPTh92YWMF2u/1BAL8DwMeHsO8F8Ds3m80fauXXe/PKmW0hKc6RRVp1asBUiJxjMOroHBHVPEfXHN4veSNHCS+Xx/lkJNd1OFUnxJ1BtPtK6VXHz2EXx5IlDhUiXpFvj+Ib8RhzbKi3DfBLQivsld5MdYt8tXNQopzdKlV7+XlXSxeyuFl8TYtGnBeccElfvAbw5rDPA+AW4WUbi/hhU5EHv8j2XpKfdu48i7KWc4Ocr5SrOFa/pv6N2xbXKZRermNGeJX8tvwvGnG5Tb+i45H48OoUia9pJfkE9Np1cKyE15FuzZOh9z9ry5dQe3tFiTKhXkiPKtyBnuvTNsa8YS5Z7o3fUnkVcwjvtRTYx1B6sd1ufwTAjwHYbjabH91sNj8A4Kc2m83XAHwdwDcuRXjdBVYPqyXstcq8hGqV5TUhvklhzvnGtiKvS6ZRMgKsisIa4399qWTmYnDD+x5DacWpRvUG/HJk5VwrBzD356qq/jlTcLUzq+pZ3QJV+1tqrxvUVW2gR9V9UX77cSlfHHAkroKbSXAKb/adXi3HKaHZvwl3+eh1ZHUOuDYW4Xwv9FNllY1mgwWtU+Z7OT3XT9v3ChipEK6dK4HN/IwbIKvLdL5KUfk1RqXsup8rJ8uXz3ctbaiwtD8SOD+4FK6/j62zpd7yesjkYxPea5d1xGaz+ccA/DwAX9tutx+dm1/vRfSovJpnNpJtkeklRlkZXzNRYOVPqzqQEWrn+HX0mDltpzDEj19kew/5Et3yuls3ZtZwPYnjvHo1EtI4lGcP8Y3jigD3gjsK7ZAckc1sOesw5vpuR3KBnEzMCe9pH9WMxAv2uJQvVrWW/0FFNiB29sfEMIgu58nI/I+qps5f6eAMcs6VwSSM20/4N20vcQ1fYLw2metXqbxDEU8Hlk5Zd/6X6/mKI62m5JjzYah/cX2jDqJdnXpJamuQPwdOIHDkHJCvOvWQ3+q86R8mSJxVDy+oljC4mQHNu5XXkji9/cW1SeijkF7gOLX2pwH82qV5ZAqXO7YXKtauRq9OwBG1S3SoTEIzx5dCPSCN2AeJkjnPSiXhOmZk2U1JhbPTt4XfxZ706rpebZg7PpFhifW2pPyAa6HqHbN8OolvVsQ5Py5rLfvq4LWD0vbE7UDbQsv/Z7MGldqLJB7nV8Wp4NTDF0K8x6V9cXZ/1Wbccidg7KP497kpt3qurh5O0XU2mU2za7txSjUO4TucPrcWP1V9M4IO1HWOOiqx4Xy5TStBvwX2/4KYHsDNatr+1T+or1CfomFZ/9wiuq3zXL85Py1D9yddQcb4mc0rs39gODLLxz3iW8vvcT6Vnw5U99YdR5rHIKBXXdO73W7/PgDvbDabH99ut+8B+DUAflCivUH9rtMRn61WeL1aHf9H+xvsH8ybwy/WWcWIG9iPuj8H8C0x2M9WwLexd0yfH9KHkwrn8uYQPRzXa+xv4M3h/C3GhvgZpo5J16iFCvCGyoiyo4yo8z2VNQD41v0h8gr45MCuPsEK315NHWwsKYg3qu8Pv4A60kir5DjqqI0r6qYj/BVOy41vaD+u8/NDfeI+RmcxHPK8jUzuJYMOfLI+3ZPjgwvocYQNUuF3DvE4DHRxA1WaQWH3ckqPYZKfCx3AhI19vtrfk89WK9wDx7bzGqfnGr83VNd41mo30Qe4x6PPPW4VZJ/B4dFxB9x9ewPvULuxerRx/6Pi0r74frXCbrU62toX2PvTaCJfHH5hZ2EPx/Q4+RZgbIfhw+L5vznk9SmA9w/nXkt+SvI+PfwGOhflhE/+NvY+O3xyfCLtBif7dsprtJt7AMPBnu5Wq6O/BcY2ym1dFVr1uXHM/UIc31E4t41ob0zk4hoi7RcAvhWONyoofSD7kGj33Ne9e6hD8Ob473NhMNGyPiOfM6et9hCzJagI2dFnuRE/d2h8k3v6pfvx9hOsRttj4YcyPl8B38LeZsMuP8eJM3yOE0f4Aic70DbDz+5oo6Z6cS9v5AezjXdBIOFIwjLCO0lzJV987RfZfiaAP7bdboOD/dHNZvPfS5y/A+Ar2+3292w2m99VZfY7vu/7cHfX+v9QY/wpAP8FB7wP4DtnZfHg+BTA3wLwoz2Rf2p8+PV3PgJ+6eXr5HADegPGYAfgpw+/x8TX3znM2j77r1JfDj/w0Xmrim6wbzpPAecMGFa3l/4W3rPBRX3xx+KL/2JnJX68M94NgF982P+Rw+8PdqY9B+8A+FnY29jfPfx68CfPbF9L8A6An3H4Mbjufxn7PvCIzwH8Fexv8ANX+Z9/hHvy5CDO6uvvfLR/cFd0pqHlPDXcXskXX/XaN5vNXwXwjybnvuuwfYOTfyvxB7/xDdx99hn+JoBvAPib2I+K3gXwHQA+xP4C32BPJAHgFwH4FQB+0bsAvgf7Rv/3gJ/6BPgJ7J3w3zvk8y3sCdsXh/0YIb2L/cj2K4ffOzitU2Ul6zsP5zOlN8r4iUPd//ah/O8A8HOwX2j3nQC+6xD27iG/WCLwS24B/PJ9wZ/crvD1/+8j/PD9x/jrf2nAnwHwFwB881CnqN+7GH+hhusbWzdaZDUw1MFQREIZ31EZX8W+HX/lUPfvAPAB9j3tB4dzsdzhQwr78BD2wSGP26h83PRQJ3i9STL/9QlW+PrNR/jhNx/jg7hClUA1TBcwcxy3DsTF5TAJdy/VOAWzhUxYUPWepzzvAHxztcK/9tFH+E8//hj3w4AvAHyCvS1+cvh9SmHxC+XuM5yUIP5PWQPG07bAdHmFLpPgczDhGta6dhe3hdX77wPf//0zUz1/XNoXf+0b38C3P/sMn2Dfjn8e9r72O3BSFz/H3q7+Ovb+7g57f/AOpkscwr98E3sf+WOH388F8CsB/CMA/vFDevZVjJi9X2Nvu9+kcEYo0YeuAH/7UL9vAPg/DuX/A9j74e/Cya9/gJP/f409d3x3tcKf+egj/IaPP8bq0L549sIpvm6JAqu8PIup/5Y52mAogdFWd4e6fYg9Cf6uw736BQB+CYBfCOBrPwPA1w6BfxnAx8Bf+WJ//Z9hvEQi3G/0Pfo1nnDJbonDp6sVfv1HH+FPfvwxPhgG+x9Qq5cNK/+4ZMBb+ZMbdTy6hCGOte+Jc7cY34SIc0P7AD7ZrfB1HPqmu+Ek4R4c7reHsS/+JvbP5FuHaHGOkhzbTPTHPAMeMyGvsb+furZcZzAA30Xqs1Bf3FrWkGm5awDvXskXP0XC342vDAPuhuHYCKPhMT+6xf7BhI0GcfwwGtlhuuLNsDeIT3FalvAa+wY+HNJFEn4hK75G8C7GPGzA3vm/T8dhWNFOooyoe8zi31NeQQxvKb+vHsI+DCuNaREAH2DAB8Nw/E882oZ5qkLPRd0CkXVMi1SrDO4xrjsO1xQdWhDgrxzq/1WcpsLek/Pv4UR6X0VFuICZ+AADPnSTOm6JQyxLkOmo0dwer8EI8M2COUfIHHzm95dM+riONAYtAPDBMADDcFzqEnF5mc1r7O3sC4z9OD//NfYO9B7TR8Rbnl5TR6jLGKL+1TKH7J6oDTcxFL3tC7rxahjwxTAcZ3/XOLX9W5xs5DWFA/6LLtHcY7o8wt+hXwysP8DePj6HX97ANhs6tBLPgeJ+hpO/DfcQTT84TZQfs1zxXyZD/ACAd4cBN8NwbG9cLgsOUTa7HBz235Gtc1U3Jt0b2o84/CJxkOEPo9KvcGzUXxn2vpiXn7iXkON4tEaYtnG9vLztw/DDHU1uro9kOCJc+YR4HjfxQCKB2w/jvqdt3OjKUfN6E8Kob4q1BwOwGk7P9Q77Z8Jk9RVOn8OLxxjPPXyyW42h9sJg/83L2TItB+aSOe+1HK/gyz7exiv54muv6V0iamGz2cxYyXlCkyxQBG6obtH+K/j1Weciy8u9uJBG5Ag309O8fyvhqvTqYnhn8EzguXhdz7vGuENjx/neIV1FXi4GR25b57VH6k0XYepAKV6oCerY55Bbp5YE+D/ChX1xx85VjS0rM+EstfNybSQIqbtFTFaVuMYxjyHWJp7LCxiTYheXr+8FU1zaF+s6WR0TMtiO2D+wrbo0QbhYNGD/w899kLQ6KeMGXjqpwzZdzVJwe9Ayea2x2njm4/V61MVnShzf83Xyizof/xtb3NDD9B/7gbhGSFiWt8YZkUk+UWFn0uDkK51Kr+ht96N1qa6OqySyFlY57p7K6APuTDIXalet4jWsRXj1+VdxXZxr4drLGyYOc7vdrrBfovXXNpvNb5qTX4xoWijJBLXW7CGsUZ9XzCVsTnmI/RJJBHVAETVetMs6mMzI3TRHBnas7DBZec8+WcarC7pxyZZTEd2M2TmSq/kl6TPym6Eiui7eikSVIJa6rEVvX8tZVW1OyUZACWpGbFvp5p7vLefLiIfwxdHudYo0iw+cyGS8F7AzcTie823qNzSPVl00L4ZzAyqIcN24XUVer02dXf7uvul5FScqvqS+WInvyDGbtC4fHQDrtesAYEImWw9BO0PJpxIKevsO9RndpHypM5mjZtBFuGebPWt37TqI03husnIJmQbqW7NkpvIh8RSWN/zr2C+HWlQX5wT1vCqRxwOJF1sdwR9Hxge4mYzgSmp8GVfK4Eb5Je4wfpNMrkudpFNBtLyM5Lo4VacW940Vnew7vdlI836Y9cGGPVS+1ooxSZ37gOYqwEp8MU3XS2YnZVTYHT5BRPfAPXclE2r7kHOQ8AF7E8z6s0qh7VV1q/Ae4ht4IcBNLPbFsbQs0NOBhl2FbwCmgzO2SX1vAhj7JEd2VxJP082BkvBK7eQBQPx2FCfsVkmI+lanOjtiPkg8R0YnpJRlc/oHFcoBV5Inn9P+d0J4NYMWnJOKi8TYV54zUxZICW+lCqxM+AMja09OqKqErFZ45NGKd464/dh++FFJ+Ha7/dkA/iXIBxV6MYcMpTeaGqXejJX8dBru0mCC2uo0jnUwEfU62Ckq3PQg5LilPrOayH6Op9Ji7R4vb8je1ewasWcPYTRn1RG/Ou9YnpaRhTsHyueWGJHrZSJ/1yPh9O3NtURxU7OqpDlbd31Bb1+WTef22JZLl8XJ0FLGvsw41xezHSl5y+KFT2XulTWNtcR1xFcJJtD2o26Ar8smonyuv9ZLXUBc3w7+H1Pw/XFhwNT/qq92yi/XUdt3bI//gtg9gOI6eV/dDfuKm5X8J7OMKbsHrp2uSyflHMubgUmaivBmnX6WxsXv8fc7u5v6QPWbqtoW2c+pSppfILMTIO8qFU5IfCg8ttL7BwD8bnR+C3IO5t5AJQNsw0s4ytKOtTXFz/WwKuhqGo/rxOoH56kOP5um5nyA6XU6RYHFBP65fyu6CHMfDl+wYo4C7OKosusUX06PRjnVtTkjdyOejuwqZ8WEuIXo6KPoNW0D56i9GVqKr8sfM8t4y3GWL+ZOq5otYrBvvTXhOoiOl3Mdqk56Zc630rt8KuJ3K8d8LyoCk5XvpqM5bovgBLKB7gqY3ujVtJ1z3+d4qhs8HyMD40a5LirLhfLNiPTV9OQBi2bMtOwlxEFFEZfvDPT+2+ylyGYKLo3eW3lt5fXRlN7tdvtPAbjfbDZ//px8emT21BYlgotXKWLXgDPG0TXH18oJ6j9a6pYbKUa4KgzV1EfmHFlQ0CUOF72PLWvukS2X5pk5TqdiuDxaCginr1QQLW89Vnu5utkAb9I5dlRD8wn0Tiufq/a6eD14CGf/3HAJX6xiYcvvuIGw2hWb9CuJG+WouutUUxUSqmde1RemXnEN2vyYoIfaG5/3y/4jmy5n4EGDU86zOFzPqLt1LYnKq+kxPT3Kl33EROFVhpz9XMYt35n5yV64MvicC3s0xlSj8puZSOXsyfXv2l6y7q31GNz5x7idj/kI/wkAv3q73f4/AP5rAL9uu93+l3My0FF1FacVoTWaVWfn0FI2eqCOEPBO+lgHZQvradvUTkE7A50ma60fcmq0I06q7PIncx6E9J4L5+j0XE+cVvjcuZy5Dt9IMTerqYNyBDdTelrFteDUhDnq20MS3xdcxhc7Uc4NZniwxb4hiG01YHafYlTi55YHQM5VUD+pHC5TTt054ER43VrdzDcDOSlRcu8mm7Rtaxu/BcajjkPkjGuuMPURlg86R5L5Lq10NaB38VyerU46O18RXo17DtGeCSWuLRFh6czCElS3wD2eVpxr4dGWN2w2m98H4PcBwHa7/WcA/Jubzea3Ls1POcmSxOrcImzAON+5U68PhQHAesbcBDvYFdrXkSklej7gBsLsY17Rz63NAy7TGCdwHydc43Qjqim3ngq5eJpvFidQDae1LIWLmyzRcL69em6uyEvYvlviEGG97SuLN3epw5cdl/DFSoTYLbnZasDzlB3tuwEZv8gWtsJlqA1lMwi9ym+GivjiUM/XFH84HPfaJV9Xa8kbkvN67ybCjaq863HaVp563PXZr+o9i2pZw7ojjqtsDzLpspVXz8M8wxH1zoo5Gz9XeMvQ0y09ZcILPP6a3rOgqlR2s9mhrjjy2sfVKDuMP1auaRit84zswc9aY2MsVO9LjP543Zx2DqouZEpvNW2pCgN/nzd+7+L0YXd3T4vLqtHbinqJrObNJLIizJx/D/HlMirM9Rzm3GqoRQzt0Pg8P9c7ijvg9CH0DEpO+bhFcPn8HDL7QnyvC7fsIPyE2hrbUviH9zD2U/GZr4gTC43dbHxrZqxlm4FqNsGRXK4f/4MuSNgO+zYS7zFUcIqvKtU6Q6fXrWTX1XWkyoYisRq3f5eWoUR/lIj3e4muPtTIQy9O01XiQYWKnTkH6QxJicOVnM45S7l6+ttsaYND5b/ndFvX8tdPgvRuNps/C+DPXio/7bS1vUwexGqczjV8NphKHOxBNopGZ76j+ju59QCnou4knNUSRe90oNbJKQFBglnprUjvxdF6aD2EtsqXL6RFfIFlN5bLbMWJMiguKzEhumjHyOe5DbSKZ2Wtum0ZGa2IcYUq3gvxnY+lvtjZUE8a/W9s+p+meAANjP2JQt3ggNrXMjJCwPalZXK4zgYyweXZtQlJRO0De1U85YBuoKG/0QMQuH5hkp5woxeWXaibcXMXoTelh/xyPMbQOK/1qJxG5Y9bhrIQPV1FZRO6ZMadn4vsklr+tuf2PzSeBOl9CMy9ia6DZzVLnc4cYRHIHbAbReu6raq+Thbm/Dif8CNO8dW1Q9o4VHXQfS6XSS7v85peEhfmPaueyBHnTXF+DulkEqzkOMu3Ir5cx0DPFEEv2XX1kSTaMbpBChe5SuJlir+bbtYqO1Lqwlpq7wvxfXzociX1O850I/z4Ca0DXuE0mxD7YT/6lQSndroZrDkDazdwc3yOSSyT2ojPg3rnFhTZbNsg4cD4/jpuyPdX63r0ua/oxCFQ+79qQDzqu7QwJoA3lND9H0AlsnGBjhBn5JfjKFoOICO855DYyodXLHM32kzQQ1BbA6QsrvKcOTMmDnoLngLhBZ456WX+USEaqY7Gj5msDy/6DL7t7jBu+HM4k6tLlXaOugpgOrdlLEuduAqP1WJ3l04bR+QTW3WI/BLKu5j+z3b7XJZiLfvaI7jlBj2EtkKPKqzOWlHdgBbZzdJq4xiAm4QERzHaX7WqthRctawNZ+FLiC9MmhdcDmo7Zix+BA+EeeYn0rHPiP2dpFFwea3xZS8izyhPCaASSyb36tfu4P2c9geqyilpHzD1v0p+td06IeI2TrAysZoSXK2rzhICspbXOZA58l+m5Oqx86c9BJhRsbIWY+tRa1pTZDPg2pPaAsdpXf45M9WM1njBncvSXwvPmvS2wKRVw487ydNX58bGlHXQlU3P4UWtOKP2Zlhy5rhcw3GKiGtc2VQIExCnhuggIjo4XtP7ZKFk+By1V/PsLV+hpL6CI/270yl+RmozTrCBiQeKF+t7FUpSW0sc5pLaXryovg8Hpwg6X+JsLLhXNC1WevXn/kGQU3PZZ2uTy5ru3HFulBNlMellAVXrqOTRQUmtExpaAwuun6rQa94xjVpFjGwm6JhMH4ojvGt4pbdHmMiOMzFhrrPoYWWX7KwKYcUtQUAjrAe96VrxLnUbHqvvf9ak9yy75kYZUzvDtO1yGp6qu0QnXEGXFGTGvy6kYe0YWE3hOFXDclMlzgk7p8gEPZY2xPbmFri9G3cUs3HOA6iI6xKws+4hvoy5a870uPcG7k6qzBrjWUft5Bgr2cZ+pLuT8Bap4KovJaJLifGL6vsw0LW5LcWJya4qvfqZw3BxQYiZdOlgXG0vG2NmU8C6tIDrC4z9m5J2bkeq9Gr9WjPcA205fGfCGc736uD2SGJZ9o0+EHkbci5oxSd05BPHrX+dqh2VGpE+bD2OsjjNHLRm0pZImK0yOtCxCqIrrqabM3iqkHVBPbfoMcWuZ016gb6bF+2wdwSjjkLPfw5f7qWm6TOHbGFGuE4JCTIS++w3+N44Vbd32oTVjbh3+lH59wDcvLs/eHWX/yvibvSMxCvZBxKuZDiL70hzRXyB/OZVDnEO2dW4Ov1griNzVmr/qhxVcJ16i9xWMyhqq1WevYPRS03vvWCPdzB9f8X7AAAgAElEQVS1DfYZbgac/cMrSvM5nQ/SG89aPit7zN9tW+RS6+jOqUDAcG2ESe+9qWMo2K7putk0JrpZ/XT5GhN0JbzBc48vnt3CdnZ6TUqaJ34guzmamVN640I57rnkl9NlmDOTVjkV5yh70SG4zNVkdJlPRmrdoErzCLjZXD3nzj81wgu8JYKHu4k82NTwtR6QF1Liu5L9rLxAIbx21bsXx7TO6yVlqIFXDn/OtArfRmB6D9Xp4j0ArybLyZbjGlacGdSSPJbGr4bWVSMwaZz6w+Eum6o/yC4tu11uuhbwHf9czOkksj74BfOwkp9TJJ0vZqWU+Zf+szA9duM7YOwK5/jiXuiyBa2PEk4l53xfKh/siAqv4ewRcMo2qc5ZfEMLEefGKR2O8LZwzuA+u1g1Sv1VdajqncnhjiD0Xv+FRuHZ7ForXitc0XNZcwnvtcjos1Z6WzepakfupHNcGi0+qcPCYKuOzpCYZKhjLDjstOrqAVdTks75xf6ajrOZIXbOqj63CLD6QVZ6Y53D7U/m/ufiYCllrqrbytPlHeeB8c3ih+du4kzyWjpYlT1JPVlj+vlM7auUDGvxa4zX8a4oLM5nxFYHY70q8Ny0L7gOVhj/690qnvoHXt6gnzMMpRd0nPmMIdk/d1BtlU2MrwMS5x2Mld7wo2vkA76A+tpqgGjc/+h61R8f23g8MCGr2gfq82IfYe+pI7ycWc/XG5aovllYLzI/OlfG7EFGCjr6HtcPq7KbZfXYs1uZb5irBZ2LZ99faAeYxUltV0ZtGfHtbvSNOrrjDJWRrnoiCdhB8r5TR7JsW/dY/R2HHzvFQ6/2ZF9ky5x274OfYxj6y+ri8m4pCh2Gpx1klpXGbSEjJXP6o2upvS84H9r+gelyA5eGlz6tzT43jewlNh6YZ8sBWkIC5HzPrJZTdTmM1euqfm4/e3GtIsEKJqwTN7OWCDMwclWZ/5rTSeooJsvL5Zf5vd6OpSrrHFyYWbllh9dCdSlZd/SUieWzVnp7wMoTIA9D5CtVJ51S1VKxLoFZ03ImslMmdph+Fij2swGyOlcdUYbK5ngZ+9NRx0ZvtOkXHLobSi85vJcLeIiHFnlWeS9VIHqcfUWKdSqCHvYap39OwbbCzyJTuEDn7jDtszIhw8GpuKrmVmmAXO1t5fOCy4G/08s+t2oSEZfX9Iafckpv9dUXLY+bY4898T6nqwb5sdUBftRV2w8vT6jcha7FzOrhSLpyUBVvjmHJyMK1d+0TA6OlDQGOpNNEmYPfyfnsvYgqHucDCe9F5kvnku4LoEVse5YxZGFu2Yzr5xXnXGpPl30tPGvSG52uC+dtYNT2dJhu0jlVNxxW699JOmhbVTgjMO+pjZ0Pe9JDIZqPqrvxZnHk15pO4+PMUTtVQZ3lLXD6UO/tngDHFxx0Russ9KoLvMRhSRnu4bhlDnweHeVVRLZXAeE6cK9bLGLVKU2tkiPBWrU57UKX1lSPbSmBfSG+18E7mP6L4EyRZDviATHg/2sjk15Vf5WkwuxngmaPsgt4fwYKc7OA/I1hbvbsX7kLquqi6q9Oaavv1Par9VzzRcVDSGY8q8HwCHqDW4RR158A3nfqiFjjIYk7F5XP1fOZc8zyPEP2XKLqZjMELu9zblWvyvuUCC/wtFXobvTMNmdE+Ij1+Lw6Nx0p9/Iqyd6e1zbTa+hrILXaikD3Ons9n+1zme5esaAw6ulWub9oIku01KK1JTtvz8cure5ndXE3ykkpmkdPOZpPUocbTJ+Ty6rX1l21GJma1kJvW3js9WpfdlSzAhmUdwXhDZvTF9kq/6tLtdz7CQ5LJ350QK/NTQf/XJ6SX+dXVXzoVfLULegzOR4rC16f0vROKlmfxRdc+aCqIJemIp0u7lxDzPLL8nmizCmbmV6S9m3Fs1Z6qw6ZnU/6MKXR6miWwzSJO5cV0f1SmqDHCO+H/L9scV1V4eXBcja1kU3zab3syJ/K504M72H0wd7bL9r36GyscFI417hc63Zq7pI4VdpAi/BmD0DXslCeVefW06+0VN7IY67jXdPWndP9njy5Pi+4PMIeQjTM1iA6n+CUXl3ewPnzC3P6ki6DBcC5z14n0CIfwA8MtZxb7AeWqvTiUH9We1tT1W65QxaX68T3eTLAdcrEapwHbzncChVOXoaLaNIBXq1159xyh8gnm1kD2iMErU9V1yz9EkNT0DW49lOpuC270HSN4i1ams9TV3mBZ05654LbtzVYTEft6uB2FOccotZ68M6AmcizP1ibqSLXdrlxVNPK1RqyqjHpVF/c69G/GuX/UnF7upfx/coSD9Va+MHGzXE3IMIdcW45ZCR5ZlhKeHXKQOv1Zr97c7gWna50nbiec8qRmqCqbVwNZ29LHq2may2ReMHDgdf0MtQG7mg/fuEfcDjPxDcG6q8x/gcYbkBUqbn6PfCqKWZNn7dKKPmagNP1MOll8qppXR34mirlOs6x33X1H5UZIwqpRMYDbb6Z81DCW6lE1VKFbLmDjmKzPBg9DqZH4l6Sz0z0ajJztZulq/iAtgjiMJfwXst3v9V9hBuBWxiiuDa/ykn11CM7VswxzmNcaujqoDmerg9jOMdadQ5uCs/ds5FvZGnnla/rYvSO0ntViMpZt8qcqyJwnEsQXo1jOqBk3GfRY/dZnOqyh2T/IfBlmb57DIQKy762Z+k6+wd2DepbzNe1rF1lX2noefYtf8f11q0SfucbtZxMRGjVwb0kmImOOmiNuk0cNnVulUuJ8zd6ImNFLcehnXPm+7LwrOy5HUqPRPnIaL0c2ovH8oNPgfBeu6yLI9YlVii5B3uk1WnjnOtKjqsR+lLMIRajjsVYscsrazSDnHNTaD0NhZ2qOt2j0hs79AWHZ2mEPcPYlmzifln6ivBWTr7qLJAPWtyAUauzlNe34AZoei7D3LeeX3AZZCSvWvvPRPdVsnU/tT0mkQEmlec+c6fkqrjJ/QNwerGP66z1irpz/QcTvpMfkPtyJ9I4f4w1piMMgpvRgUbTB643IRsdOOdxaeIb8XuFhiwvJ5A0fGqa9xlEukegytJkS4DUBpeg9/FUuHb//yz5hqL3Bo/amnlak9GrSct5XOrmZU68ij+CTKXrpXF+SijmqspOnciIkQ4UjssbaL3DCm0fmMJ64gJLHlimYGRhiy6kUW5LeuF4maGq0a7al5apPK6PaN0WRvUCz1wsUcpeiO/l4cZtLUWSzVQ/eebUXo6bQcmhQ68wwflkY1x1QXH9+k82tG6V/V+CgGTnJvxW/EQ1lh9dY8vP9fhmdfwPQXwjjRpnj9DQi8xRPhLm2NIcke6cS6oezbXxVpDeDJkQNmn0tGUnGw6C15JpW2ndQG3TWo/KkKo1tJHX0WglolOjVSVQVUHJ9mDC+FzUQ+tUqQxHlfddTJTejDwdL2hOeOvmai+V9V4avwfnEt8eD5HVv8rL3KtsINd7CVkn2Tu72YtLL314Ib6XRfYvgrP7zP5VVjwdfe0rE34raRnuJZ9suQNjztceuO6BbJzJpDfi6wt+TvXlurttts6X6+L88OiexQ3mBJQHJL51i06xcIn43JIZrVa4G0ll6FV/tUw9nuvjr0SCz/najYZlPtyFt7QYh8cin8/6RbabZGQKjNudVRrY+MljrYZx2ng5pmfgWkHrcSnsgIm1toh0pOPr0zxb0ykMN6u1lv3jG9pBeN8D8ApYr4D10N+AykoEHtrBxGjj/2/vzOPuOeZ8/36e8/tJRH6EkOAmuJaIuZixhRiCKAaDGWZw7cvYYp0h/MQy4tryswsR650slhjGuMaWKESWG8YW1+5liWVkIYgg+SX55bl/VPfz1KlT1V3dp/ucPuf5vF+v85zzVFdXV1dXfepb36ru9i/q2Agkgu/uqYsTC8s1eGOWwCjyezQ5cAvruN9Zhllo4tlNZactOWnk3NQWu8FJtCNm+FUZvOU+/lMaYNLILZ0Ou4L4/jFCYzHMV1eknIV+O/E9vVuCPJf5843dth1/k74k1OJ1T62f6bL/8+KGXu5y20pYEOXGmA7lOCtKLYVJvfJ1tUpvUx19bkHVGcpN92lCJI+5M7Gpp6T0fX9EFTnFMk9v61J7ekOiI5eEtRWzK2LCXkWVoRwLK3Uj57EhZb6q1vT6n1jHkPL8+jRd2+uXm28sjSjEsuzFvF6t90Hw1BZ1JJ22cVOeidxKUtWZ1KUR2V5l8Mbws9rVrF5MrJssv5lmMCmPbzeknHg+qWrvG7fhi8L8ZQ4Ts0YBqXWNdcvF6tKJ2XP+J5av8nFl4bINP09VhN5dP1+pp0v4dmyYnwkZCC3hIK0U0b4zpTG5s2V1Doscj29q3yYddc5+dYVT5xmYsrObxrDtS+vaeHnnyaYwepMddcRCSwlHOV3Vhdc3JGeqLsbKaqTij6ovako4w6UORL4jh5owbPHCfLFfhfF5zGJ5g5/ZrMpYF6nNRUlZfqn5ndTxckW+3NY03SpxDuOn8uKdW7iGPTzt2DUNWSVef8N0U/v3aXTO09ux2VhlY7Y8dOKF8cpvv+5sBUark68g9g3f1BIz/zhXBp+q+lVnfMa2hfU8nOVa94ZuHX/Zhm/w+ssUfOM2vJnNJ7UkrYmDZMz49gu03DhK7zvRxlNiH/724/rHiRVkGD/VcbcxfGOjgBxnQ04f0DNda+Q06dUVR04xzdvonPfxp6OmhCtnVuoaE3HDNxy1+7SZSWl6AaKVLqLevvFeRol50VJ5brLGrcoLUn6uAhs9WrG0ofy/zkPUCV0LWc60Xdtj1FWQKiM99DTUWK5+3SbyHTtM+DtF01NvctNFbP2mmB9bmKxuqRkkvz6VkrBS/PAngUq7zDeAy+1+3aqaqaoKD6kzgv18x2ayxvqFrRuGb+xZvb5RHjPOY2t46+q431+FUjDhgAg7tuJTDoRTDsvR+h/iDTzWGaQIt3fp8c11KDTZlnPstmlGSGlcrB5UDZSa1KEU03ZjJUPwCi+20Uu9wVTXjtY3jMZ/xhxndW2pxK+AbS5yjriVCcTW9FaRWsIQE/y6m9h8UoP7MQEO3TZFgc5xEN2cOqHP3ScnbqxAp22xNYO8SPBEnFQW/CxWFVOqo+8DeXtnQ8pxVjVLNLZPUWl8L25p3IYe31j9CwfybZY1+OTuF3NKAusZjY05UwZISofDfZq0m9ATXZ/xOJV9Z93gus67WmdE5hjGdfvlEMZvq7Uz6NCq6kDTm9mq2kndqWTZVwNj4Y3ektwBZSiyY0Sme5t6e9vmMUaO1yG2vGFlNZ6/cH1u7BixBuB7J/z7CMp8hF6B0PG4XublfJ/3Rjb/rWwxPax6jFyvhALe5OKlBDiVRurkw7zEwmL5DNOrqOtVdTms802yFRymljbreuXdHQ5NHANhtVx/lOHWyWUBfhz/O9cBAdPXE1/jYvabv329vhcD+9iSj9DzVqW5KcJBY1imYZ/n53nFL9jIRYul5YePjUxSTOwU2T4K/vfTD8P6NnzrDIiq487ZyK2KV7df3c2mbYkVyRC8vLDoRm8XuQ9UK5wiin23uUB1tlNoWDTyUDRQdV9gq47RtPGE5RKdavML0Zv3q72MudNXub1tVVhb47aJuFZZ+bG0w7Aqgzd2PP93TWHX9VWx+G3bRNfICJ4fYVtfJW/Qvq57pSasTspEzMDM9fbGjjktKTkaa15FQGowEHscZLimNzSIc9bvpsLGpCLUjYilnC1LKeGvSiSWwVT8psZlU4dDKt2mtsUQBNCjrbFbRV/G4qyLbrGN3gpSg8X1+l/TwMKRezhNFI6eq6hrU1X7Vy4lWPUqb/D4llB3qtbo5kyrxUgVYaihY2VeenrLdb2jtC3Wa2MID9ikJbQV31y6njOKFXARVuUZ6jtbbWgzXa0lDv2TGvyES71ierwKY67c8JFldV7eqjWLTZcD+GmkbsLz8x86TdcJ1iiX+Q1vXsvNo5+nnPPx8xP1QucMvD0mBhoxZ0EqnRXvOzZiiRm2dWJTtT2lvbFOqanBGxr4KdrofwtLNDZ72zUpv1CT/qDqksyapTV6YfzihFPwYxs8Na4ybCdG8x3m0f+/bh3cBIlePTyPWMcQm1YLRb9qmtkvkyrjdQTJ94qGotxJQ8gU88ZphrQR3yrqpu6irhvSlbWppySIXjXIy02uj0vRFBm+/VLaM7FrvYvJquzL7krw/mH/iQdlHQxfSlHl6a16CkKMJoZx7Bxj7aQc4MdephEaKqHxG65JzjVyw7zAuLaO5TsMCPpAiEvIyip5AhCzjHzCTjnX+EwZnV1ob2y/uvOoo0fhSw3OUjTVwLZZbzIGmQcLb/Q2LbjKEx5N/ozpQu4xQ89GmIdpCr8UnwlBLHqflC7ljgynGTX6nZX/We+9ig7BV+ipNKtrL23KsGxDk32rOogqmjSCsBcMNrUZxYdJNx0c5tTJ3HAtcZgPvjGae93X60hgzfpphc+5jRqYHk2eOtOElI6Hxu+YUbkaz3eZr6Zeurr4KY9cZcTwJJpqnX/BY4Z0zv5hvqoG+6ntYXiYt1nQxbF29dcvC8diG71BJc996sFKhVqFnqyU4PbRnnLTm4iXOPEqY6VqLVld/GQ+iBfrepmWP3xP72gqZ2R8h2z1D7a3NZ7beCzC7VVTfmFYKr9VeUqUQflWw+hMSEaWUgO7XFJtNpxl6AJ5e/sjtHdGVHtQJ3TBexXbyurGEody0yjyG/K8XW2uu5/vWHsIB3gT7WgL6zfp+s93L8ul7nFSYbnF7rQvv2MyEOZvwvD2O7ZII45J6JhBX6exKWM2pkV1HUlVWE6cth1r6nhV+ejYfdmHkZtqD01mFOrC2qQzKxbb6C3IbW/RHROlX5VmVaG1raRVHtkq1itwxg6xGyKqPGW5j/ypGxBEOzdPbCsuwzhhwbdxR1al1xVNhHfaPFR5R8IL0fBYKc9v1f+5dvg0yHgdHnUe2BTrnt7Aw1D+THl4Y8eILRPo8q1VYVMbxTb6/48mjXSf1BNLwvW7TfqUOgfCCNJTlpEGmjsz2jhOk/A6o7ipR7nN9hRzsN7q3pwahsXe6tcXOeOZeTPEPHVGTJzGRqshq5OzNRE9nkhzWsKshF6uK2PH83qBtcjT31NGSJXB64en4tXd3BFmbywfZQF6Xp2yzMt9pmYaIe4q/RSrkU/dMcLCqfNK16Xpf69ORqmbTcweoNTQ5jFNTdIWsyWmkVXxxuL6blxvnf8o2OS/tALvu27a3zccp627sU691Laxcy8y7Z9nuS1230T4O0bV9pijwd824eX1dwq0INSAMZlIuYBTo5Mq6gzXLr295TFio/Vco7qPEXwGfb1uuMma4DqnRxPm6eWFRTd6V5udwGjih/d/kFBo4IYinH0sxnWlzmjOOR//PKq8GVX2UayjaPKYk/D8YuXja+DKKmM3q4TvdO69IjZtaTlGZpUIdtGy6wplWkO42Dc0VHKz3uaa9SF4TYxceYn7wdcAnzrP6brR67tEV8eX/If6GZHriYF57DXEXWqMr3P+s8RX/R+j8UmtVJ5D725sqVmo0alyrTJ+x/73DbmMGbOJ4Fxt8uPGCqHOuOxDf+ucDl3RsdhVOZ9S1MXr00GQO46ZNYtt9LZgNfwn0sCqvFwZ+tA+P03i17hYY3mLPZqsjcGbw0Q5hd4Fb9HeEBrCOo1GHT1Q5d2oM27DfVJemZYM6jqJQRIz8Kq0Y2wGyLNqU7NsVU6DaTvwqpvgaidlQh3zPL1+vkPvdN1NS22WaJSEdu2E0yfs3Lz/Kw2WJjoUi5NjoFaJTaqD7srx0NZBMg1BRWh7zbswYpvYOIvYJyyd0RtOY4VTYev/JIbA5ajdF6twBqhOfMND5dKmAtWt+apKs25tUOpxObFy8LfFPL3rhm7p1bnKRlisrBudSC6xNHKn4nLSnFZ02+QhrOjhRUmlGbl4sV2bFE+qTeS0gWme4NAUeXu7J6YFkVVXwKRB62vB+pvZVuP6W+ega/KYsibxw/xPbFgNtm1h3XjfGuwfGrxNb9oM44WGdVVeV8MINQPhic2xBEMNzDGKm8xKxdJL5blrDQ4FMCe9HlycOfW0ydNA+njKybRd9KwM6KUzemPUFmZQsVMOsjEjroP85NgmlYn4O61NRmnbOeQ+G7IqO75OjcoA3/Atf6/OqRK2aWF9zeenRg9VeWiS/6pKuzq5OdaP+b/DgU3KmTNV/Wa6O/K1rne2hM7aJvuMWcDex18BlYgSpc1zbn1Sxrr/2zfCy4DVcKfV8WcO+2UTe/tamPcwT7nnEfYvE+UVutAT+1fKXaqTbEKdEZubXl28rtKpit/DDGGOoTvUAXxTu39WBi9sEqO3ZMwA8wN9RuObUiPlLut4GK9O3JoONuvSr5tqa/r6y6R3vYzsP8GhKbNsHW3oepSf42HINYR7LLsmjpCmNH2GqZg9/sspfFI3vk4YVqFlGJlxSw20Yq/0nSleZiYMS+odJV3ObDRqf+HsUIUbPTTws9P24+cO7tt4iOviDL3fmIK2MwRVTDMGGTqLbfTW5L52pFrhiqrybs2CrAq6mvAAVGS06vmPXZB0AIzYuDsl+MSeFdvJwbuiCwVIpRELzy2IOkO4btQ2gwo9VIEZqodkUVkJDL/cCY71Z6aHBu8oGdzKgGxLdtMfBeHF4D716uSSuinpUN9zn56TGgeva3HNQDlLGnJcwk20sypuXTo5xnRTV2Nf4rVg1mOqC2lyGkPx8sJw+6Rsmghs7sbUIDU83iwuVlLEU1duNP7Tz2ObdTx164XDwUHq2GORwt5saDRt1TmCW8ar6gGnoWr2InO/uiUJ0y6XS9GXl1be39nSWosThm/M2VDWwZWaOp7zfNu6m8iq8LMctqF1RpMaWUYN89fFGssq2YoOFjKM1om0olZ04kC5lk4f3t6q44Yi13cf1FP6sxjgzWLfWbPwRm8OE6KTmvv3PGMx47atjdbViCgVOea1qkunailDbLlD7OaJ1P/h71X/R/kdvKAiZlCFHUojUlN1QxpyxqgaceV0JhmDodim6DWLHHoaYlmYp8dV3t4O8Qy83BnodV3wtSHi6Q031zkd2rxgp47ac1sN8lNkNGdiJXwmet1yh9g5xcok1nbXNTWlLRGim6qM3VzqvLdN4+c6H8q4uTraJN0FYEjOgHl0uQt++epJtomUzz4RPGLyyQ5Njh/uE7Nfcr0k0aymHqIbIeelALlh4eGSA4SYwRspyOxG0GVradIKhtZimqxxa5n3pnW0SXrTIKN1QLRtFzEvb/EJB19j2teiEvXRwYZOlPVjFBZy+BQKv5jqvL05LxIaO2bDbROdUIUWV/aduQduM1hP7TcPHa6rQF0LZYQmmjetcTuNv6mLdPpiaF34bEmMcqsca9MWWN0aLJ/K9VsNapK/X6rRxB6I3pSUNo38CGEP4PVk2ae0CLW2TR6bdCY5Lp26jmeKcmzqRM9FhuziEnpj654zG/OM+hUr9JLWTXRUeUnb1M2cJQ7JAwTGe7g5dzlDW8Ml5pyMlkHEQknJwsSSklz9qDIG2xrCOcdqm8Y0x5sTVbrpt8Eh6eu8im4RzIc0bXOfKm1PnaJtZzTdYTtnVC/0dXnt4874aPGGLu+gJ+hyYJHrxZ+61fU5su8qvVQ6NTMbuUnGOvS+luNB91NzQ+oEFpqG9XVsILzqfQLjN7SF138HFSnmJe3r2qbWxq6GkYpPjUO19k1buR7fMH9Jp03ocm4ydZlch1axPaROk5q6rrvW3rae7CVgMLZNj2yGcwSSTt3ayhsajinhmiZPIV2tQatj2uP43oOY0Pp92PrG8rOV8Y6uimm3TxN/mgvexbKJZMXN2CcnbqRTrttlHrQdnA1p/dqyUzfIjhp/oXvYE47wqS65tllTIzHcJ6TKzgqXW0x4r6n2UqeM3Dba3Fiimhi7TTKQo5m5DoMcQ7iOWS5fm4FoNn3xRNt0YvQ1wzdLhtSvzZaMaRY/aCUcHVfvOlVWpt4pks8wqMvptKxKFPPwdi26i0oXrXDKNFLNIbdvqjIM+phaFgMjsiwhRlZdSMwElemW0+y5Vb5JXerMOxwx1toucWhyuLYrEEJ8oz7rms3DkuhrBk/0zjwv0VIbvUm7tsbgze3c5154PWeg7Z3PtcIbdmpzL8gIbebom3hY+6KD6b8+ZzF8cjp5LT9YHFpV9cC7GyYSGl2hZxUGMEBKeXmL88kxHOteCZ+KkyK2ymCs7GL626ThD22tbF38aa3/IfdVFeR4hbtsPzmrW+bNgl3CdiQLvsI6m5hS80RiWsO3a8/wWKWt8bjkPL+y6RvYqo43ttH3lgffC1sR59Gq2x5zCs96ri29sNdRTIe3Btf7N2eX9NqoQMuG0IEmZz5iOpYx45bLNIZJ5WxNykWcm+A0tBWQtsevS7sP8eqp0s56oJcxMb4wLHwf1XSAV3uxOiyRaSpGVx6uHDunzVrIumLyHTgTGxJenVY2Wa6XIve6zro1N1kk1YEXt82+XRRJTvHP3WMnOsGvL9lPU/A9aqvjwcm4AeHMVJevZ22sTZ4uJbUw4/g5Doi+OvEJY7mJ5RPzDE277qWJkTxLHR+QFaWZsXoGdLm6pa8p2r4LrFH6Fb1L03zmeIBzspK0y0ZBpNjvtgf1GWKNrriJrJKmU2phL1VVrkMsJ7HQtGrGoRYk7lqb0Jea+tvnAKrScxpGjEQosx7T3C5uxqzS4rnTRne6dFi01eI5ISO2ewZ6qWdAg2mdmNDOveCKDEzbKGbeqLJ7jAEy1PxO40EZVf47eNQpDIRgeUNjEjvOWy6yl3KNmk3Q1NH7rEc4wPDCG3u0pxlcL5rgzJFl0bp5X/K5225dki0UsbNOGLQT684Suy8ic7mrGcbX6827BXR9g0JuLznt8TqshCsNDJZlqfti/uQucZioc5FKmHpleuULfroiltdgTcOqF5SizGtXj6QKiXrJm+pvw9zlPWkAABvtSURBVEH0VPTVN+Rq8SzPtWPq6shmXkq22H3YYud+granM1HBZ9gY65aZjlIbYOmuXy1drW1rQ8fpDljvJ9jMAj94YjexhdsYt4dLJt4QNlBmtZ69Sovb3K/WG11kou0aYD8Pwc2SQ2We+rUAxdOYZTynKE1PtMtOvUsbZ5GMjTGhrercmk6pLTKzaHEtCrPJ/XRN2DTXVWRf6xzPbWzTpumsFpVQ29t2urrQrRja8oehar+qFzS6OrnehaHM3s+Cxue4GQqlLwZQdvPOgjy3w6Z1/ejZHdl1va1Nbw6961TnOE1+5y0KQmQio9dnjg131oduMirMfuyQEGJz0mNPspA60+ARCrN67Xy/CQixGGyZ58GttUcCL01s/qkx5kY56czMcpcwdEtww4oQYj50pcVTk2ssblItzp3l2KTFIzpg2evOXI1e4HXADYADgQcXYYcBTwDuMK9MiXYse2MR/bEL1Z8504kWawwrhBgyczV6jTF/sNb+CbjMGHMegLX2YmCXMeZXdfsfeq2bcvm2y9sd/PfAt4OwLcB+Nftdr93hmrA3cBFwVk7kA4vvNdi2dSsHnX0AXBP38diz+IRcSXx6bYWNynGVxKF3Fp+LcvIJ8N3iE7JP8cllzTt4Ddu2beWgXx3QIPFMVrzfYSvqulWtFd9XFJ8p2bZtKwftdgDsVgT0UKdX2Kg3V+0++cakppCv3Lp1pvkYKtLiOG20eNvWrRz0/UJzpMVAjzoMC6vF27Zt5aBLCx2WFs9Mi+ft6W3L1QEe+chHzjsfQojl4Oo0sBnEOtJiIUSX9KrFi2r0/gI3Fff7eWdECLHwXB2nKaI50mIhRFf0rsVDNHrX6iJs3759Dfj5DPIihFh+5OGNIy0WQsyS3rV4iPcdXAzsba29pbV2iPkTQojNgLRYCLFUDFHIPgP8BvgmcK0550UIITYr0mIhxFKxsrZWO4MlhBBCCCHEQjPENb0AWGtfCLwSOMYY84wibAX3APUn4x4E8yXg6caYb3v7XRM4GnhgEfQx4JnGmN/NMPudYa29HnAUcD9gG/Bj4DBjzBeK7ZuqTKy1I+BI4FG4B7ycC7wPONIYc0URZ6nLxFp7CHA4cDvg+sDjjTHHeds7OX9r7a2AtwIH4Tx+7wBebowZ1Ei5qjystVuBVwD3BW6Cu+Hq88ALjDE/89LYDfes2ofjnuzzWeBpxphfeHFuABwDHApcArwfONwYc1nPpzg3pMMO6fA40mHpcIxF0OIhLm/AWnsn4EnA/ws2PR94LvBM3APTLwA+Y63d5sV5P3BbXMHep/h9Yt957gNr7V7AmbhH7f01cAvcuV/gRdtUZQJsB54OPAv3ZMxnF/8f4cVZ9jLZE/gW7twviWyf+vyttVfHTW+fX6TxLOB5wHM6PpcuqCqPPXDn9sri+2+A/YFPW2v9Qf+bgL/DCe1dcXcRf7zo3MtO/hM4g+euRby/B17fzynNH+mwQzocRTosHY4xeC0e3PIGa+01gK/hxPafgW8ZY55RjJp+CbzVGPPKIu5VcRXpcGPMO6y1twC+A9zFGHNmEecuwOnAgcaY78/+jNpjrX0VcDdjzF8mtm/GMvk4cKEx5rFe2PHA3saY+2+2MrHW/gF4hjea7uT8rbWHATuAfY0xlxRxXox7S9d+Q/QywGR5JOL8Ge51CLc2xnyz0Jxf4bwS7yvi7A/8FLivMeZka+19cUJ7Q2PMz4s4jwLeDexjjFmqR3ZJhzeQDk8iHR5HOjzJULV4iJ7edwIfNsZ8Lgj/78B1gVPKgKISnAbcuQg6GPgD8H+9/c4E/ujFWST+FviStfaD1toLrLVnW2vLjgc2Z5mcAdzDWnsgrDeaQ4FPFts3Y5n4dHX+BwOnl0JbcDJuyupGfWR8hly9+P5t8X07YCvjZfZz3Dur/PL4bimyBSfj3qV0u15zOx+kwxtIhyeRDlcjHc5j5lo8KKPXWvsk4KbASyKbr1t8nx+En+9tuy7wK3/0U/y+wIuzSNwYeBpu/dhfAW/GrSt7erF9M5bJDtz0z3estZfjRonHG2PeVmzfjGXi09X5XzeRhn+MhcNaexXcNNh/eGvErgvsAn4dRA/LLCyPXxf7LWx5xJAOTyAdnkQ6XI10uIZ5afFgbmSz1t4ceBVw15rFyKE7fyUIi7n7wziLwirwFWNMuU7q69bam+HE9q1evM1UJg8DHgM8Aie0fwG82Vr7E2PMe7x4m6lMYnRx/rE0UvsOnmLd2HuBvdi4caSKnDKrCl84pMNRpMOTSIfzkA5HmKcWD8nTezBwbeBb1torrLVXAHcDnlb8vrCIF1ry+7Bh9Z8H7ONNO5Vra67D5MhgETgXt+bH57u4136CO1/YXGXyWuB1xpiTjDHfNMacCLyBjRsoNmOZ+HR1/ucl0oAFLKNCZD8A3Bq4pzHmQm/zecAIpz8+YZmF5XHtYr+FK48KpMOTSIcnkQ5XIx1OMG8tHpLR+1HgVrgRY/n5CnBS8fsHuJO9V7mDtXZ33N175ZqYs3B3Dx7spXswcDXG180sCmcCNw/CDsAt6gb4CZuvTPbATWP47GKjLm/GMvHp6vzPAu5a7FtyL9zNGef0kfG+sO5ROR/Eiew9jDHnBVG+ClzOeJnth7tL3y+PWxThJfcCdhb7LwvS4Umkw5NIh6uRDkcYghYP7ukNPtbaUynuGi7+3w68CHgcTnxfDBwC3NwYc3ER51PAfri7jldwN2ScY4x5wKzzPy3W2jvgLvSRuIpyG9wdii80xhxTxNlsZXIcYICn4KbVboM7nxOMMc8t4ix1mVhr98StuQRXP47CPd/xN8aYn3Vx/sVdtN8HTsU9W/EA4DjgZcaYQT2mq6o8cJ3Dh3GP+3lA8X/JRd4d0cfiptkei/NmvgH3bM3bGWN2WfeYnLNxdxY/F9gbOB74iDHmmb2e4JyRDkuHQ6TD0uEYi6DFQ/L05vAaXAEcg/M+XA+4d1mBCh4JfAN399/Jxe9HzzifnWCM+TLuzuGH4p5990rczSVv86JtqjLBPfPww7gy+C5uIfy7cOJSsuxlcnvg68XnqsDLit//q9g+9fkbYy7CjZ6vX6RxDK6s39DXSU1BVXnsh3se5PVxXoBzvc/DvDT+CfgIzqg5E3dX9QOMMbsAiu+/Bv5UbP9gEf/wfk9tkCx7+xpDOhxFOiwdjjF4LR60p1cIIYQQQoguWDRPrxBCCCGEEI2R0SuEEEIIIZYeGb1CCCGEEGLpkdErhBBCCCGWHhm9QgghhBBi6ZHRK4QQQgghlp4t886A6AZr7cOB9wN3M8ac5oXvi3szzAXGmH2Dfcp3x9/KGPOtWebXy8MTcc933N8Y84t55MHLy4OBGxhj3hSEG+AzuDfInNoy7W3AD4EnG2P+z7R5bXjsTwA/NMY8e5bHFWKzIR3uJC/SYdEb8vQuD18ovg8Jwg/BPcR5H2vtgZFtF+LeqCPgwcA/9pT284BfzlpoC44EDrPW3mQOxxZiMyEdnh7psOgNGb1LgjHml8CPiYvt54AfRbbdFTjdGKM3lPRI8d70ZwBvn8fxizdKfQuQh0GIHpEODxfpsAAtb1g2vgA8xFq7xRhzRRF2CPA+nCfhENy7vbHW3gz3WkR/Cu6OwPOBO+LeZ/0z4EPAK4wxlxZx3gncHzcNtsvbd3fgfOBdxpjDi7B9gJfj3rN9bZzgv84Y8566E7HWPhV4Gu5d4xcDHwWeZ4z5XbF9C3A57jWHF+GEZG/cqxqfZoz5rpfWCPfe8scDV8e9E/xZOM/KS4wxr7DWvhf3SkistWXn8yNjTPkecYCrFe8FfyhwJfAp4JnFqyKr+LviuP8anON7gbsU298M3Bb4BfBaY8y7vHjl1OPBuFct/hXOa/R6Y8xrrLX3A14F3Kw4p6cYY74e5OEk4Ahr7fOMMTtr8iuEaI90WDosHR4o8vQuF6cBe+IaLdbavYBbAqcXH9/DcIi3T8kNga8BTwXuCxwNPAl4txfnBJxI3zM49t/gBOVE79hn4oThn4H74cTpXdbaw6pOwlr7OuAtuHeRPxDYjhP4T1prwzr7OODeuHfB/wNwY+CjhcCWvBLXifxLkc/PAuH01kuL452HE7WDgb8P4rwFuAx4OE68H0reO9DvA3zLGPPbyLa9gPcCxxd5+zrwTmvtXSNxTyi2Pwj4D2CHtfYo4Cjg1cD/xF2Dj1prtwb7nlYc644Z+RVCtEc6LB2WDg8UeXqXi1I4DwH+EzdtthP4Ks7DsL+19kbGmHOKOL8Hzi53Nsasj4CttSvAGcAfgfdYa59RjO7PBH4CPBo4xTv2o4FvGmO+Ufz/T8B+wC2NMT/aSNZeEzjSWvtO30PhHfcmxb4vMca8ygv/EXAqTrQ/7u1yKfCA0qNSiPEHgNsB/2mt3RvnTTjGGHNEsc9nrLW7gB3euf/IWvtrYKcx5osTJev4vHcTwinW2lsU5/0Pifgld8J5NWJco8j/6UX+T8d1Hg/HdZA+x5VlYq39AvC3uLK6mTHmZ0X4VuDfgINw16qk9DjcifEOVgjRLdJh6bB0eKDI07tEGGN+jJuWKb0HhwBfMsZcZoz5AXBBsO3MYGpsL2vta621P8aJ9OW4UfkqcNPiGGu4EfGDrLVXK/a7Ds6TcIKXnfvgBOan1tot5Qc3it8HuHniNO5dHO99wX5n4qaSwvVwp3hTiADfLL5vUHz/OXBV3PSgz4cTx6/iE8H/3wT2sNZeu2a/6wO/Smy7uBRagGL68ods5N/nU168y3FrB79XCm3B94rv/f0di6m0i4u8CCF6QjoMSIelwwNFRu/ycRpwl8JDcAjjo9QzgEOstfsBN2JypHk8bhrtTcC9gDvgRucAu3vxTgCuhrvLFtxoeBX3qJ6SfYBDcYLtfz5QbN87kf99iu9zIvvuEdnvN8H/5TqpMr/XK74vCOKdnzh+FXXHSrGbF7cuzTLdWJrhtNxlibBUni7BdTxCiH6RDo/nVzq8gXR4jmh5w/JxGvAI3PTJbYEXe9tOx92UcLfi//LxOlhr98Ct13qRMeZoL/w24QGMMT+01n4ReBRu7dijgM8Wdy6XXAj8HHhOIp/fT4RfWHzfEzftF/LrxH4pzi2+9wmOuW8kbl/8BrjmDI+X4po0Lz8hRHOkw+NIhzeQDs8RGb3LRymgLwBWgLO8bWcAb8Qt/P8T7g7bkt1xXoLLy4DCS/G4xHFOBI621t4D54l4dLD908BTgHOMMU0a+CnAGu6u5OMb7JfiG7iR9UMY97Y8JBJ3J/2MwL+Hu7FjbhRepa2kOzkhRHdIh8eRDiMdHgIyepcMY8z3rLUX4B5P81VjzB+8zV8H/lBs+3yxHqnc7zfW2q8Az7fWno+brnki6ZH4STjhPhF3k8W/B9tfRyFw1to3Aj8AtgEHAnc2xjwokf8fFHcNH1vcoHAaTgT3x60zO9Zfe1WHMeZCa+3RwPOstX/EPSvz9sATiihXetG/AzzBWvtkXFld0tEbkk7DPZR8ZY7P4izvFtbNE0L0jHR4Ij3psEM6PGe0pnc5OQ3nXRgTpeJmibOKbbFG9zCcyByLu3EiOS1mjPkN8EngvwEfMcb8Mdj+O9zjZk4BXlh8vwcn9J+ryrwx5vnAYcA9cDc6fBT3qJsLcc+YbMqLgdfiBPZjONF+fLHNf7bjO3HPcNyBu+v6oy2OFeODwLWAO3eUXhvuj7uZ5pw55kGIzYR0eBzpsHR47qysreklMGLzYa19OO6GjzsbY86qi9/B8c7APSPyqX0fK3LsPXBr6p7V0VSlEEJMjXRYzBotbxBLj7X2zjivwpdxz5O8PXAEcMYshLbghcCnrbUvM8acWxu7Ww4D/gv3iCMhhJg50mHp8BDQ8gaxGbgYN0V3Iu7GjmfhvAsPmFUGjDGn4V5decNZHdPjEuDxsYfQCyHEjJAOS4fnjpY3CCGEEEKIpUeeXiGEEEIIsfTI6BVCCCGEEEuPjF4hhBBCCLH0yOgVQgghhBBLj4xeIYQQQgix9MjoFUIIIYQQS4+MXiGEEEIIsfTI6BVCCCGEEEuPjF4hhBBCCLH0yOgVQgghhBBLj4xeIYQQQgix9MjoFUIIIYQQS4+MXiGEEEIIsfTI6BVCCCGEEEuPjF4hhBBCCLH0yOgVQgghhBBLj4xeIYQQQgix9MjoFUIIIYQQS4+MXiGEEEIIsfRsmeXBduzYsTuw2yyPKYQQM2Tn9u3bL513JuqQFgshlpyoFq+sra3N5Og7duzY/Q8XX3zJntu2zeR4QggxB84HbjRkw1daLITYBES1eJae3t323LaNt7z61Vxx6aWsFIGj4rNafJdhK4nwVe+b4P+RF3eF8bRj+/vh4bHC/cM8VO1fl7fVSNwmeQv3b5K38PxS+6fyVsYdC6i6eGEmwhOp2j+Widj+dRfPz0NV3poUcOocUhc/tn/q4ledW2r/nIufc24rIzZkYUvxGXm/y/DVSFgqbl3YqEHcMjwWVsYN08jZvyruahDm53fjs3PnTo499th9cR7UwRq9RLQ41Ce/ucCkBuQ2yxUmq1jV/mEaqf3DppLav04ywrh151al0ymdT+Utp3xjTXUsvVTmUkJfpyOpzDXVkar9U3kL968q4JwCGvLFzzm3dS2u0qcyco6WxXQrDBs1iOvHT8UNdT7VX+Sku1qx/3h4lRbPdHkDwM5LL+WKnTsr++Xy/yu9b4L//Tq05n2veeEla4nfJStstM/y20/PT9f/ncJPK/yU4aF9EraROrulqtyq9o+1vbpOJbb/VJm40ksjdZHLgi7TWGP8OGVY7Pcq4wWO939YUWIXuY7wYvqf2AVN9c51oplz8YnEy2lcqfCVEbCrCNxVfLbgLox/kUakCzJGrNDKNMvw8OJDfXpVLSssCL+Aw04iJrx1BnIsbHHwtbiq6sF4M70yCC/j+dobNt+Sqqsaa7J+umFTzWmusRoShoU1psqeqms+VRpb14Rzmna4/9SZCC9m7CL7F3Mt2B8mL0TYCccuQLk91cE21eLYMao62T60s+uLv67F5QfGtdi3hFLWSoxYoflaHLv4TXQ91RH6BVH+rtLTXAM5FjdNqElCCCGEEEIsHTJ6hRBCCCHE0iOjVwghhBBCLD0yeoUQQgghxNIjo1cIIYQQQiw9MnqFEEIIIcTSI6NXCCGEEEIsPTJ6hRBCCCHE0iOjVwghhBBCLD0yeoUQQgghxNIjo1cIIYQQQiw9M39h/G67786Ijbc1p15xvZIID1+RnXrF9QrVr7iueyV3+Hbq2KvDU9S9K36Njbdcl6wE36nXmYfphu+mL1+d7r9OPXylenmcVPnGXkMelu/Eu8JTF48gXuwl8qn9Y5lIvYTeD69673rqguZc2JLUu+LLC1sSXtQw/fCi+t/+e+nDd977F5Xg/13Ey90vs6r3x6/E3m8ee0f6aiQsFXfEeO3xL2Z4kWIXKEZdy/Jr+65Iuili6e5i/H33u7zwjc/OnTtr0h4Wvhb7V8dvVr5Oh83ND081yxUmr3pq/6rmCpNNNae5xmpIGOZrcUyTU1ocprsahPla7NdG//+68o011TEtTnWQYUcYhucIfVUnXacj/v7hBU51smFYDikZ8LU4vKixtEP9LX/HOli/o4X0RS61ONa4/HJIXfx1Lfb1NAwrI2/JiOtfpFhN8z+5FyTVuvzC93Uz15KKpVvqMEGa5QdytHiWRu9O4PxnHnHEvjM85lzx24BYInRhB8IVxWdQnI/TuiGzqbRYzXWJ0cUdAFcE34MhqsUra2vhOLY/duzYsTuw28wOKIQQs2Xn9u3bL513JuqQFgshlpyoFs/U6BVCCCGEEGIe6EY2IYQQQgix9MjoFUIIIYQQS4+MXiGEEEIIsfTI6BVCCCGEEEvPzJ/TO2SstVuA1wOPxg0IPgw83Rgz8dgLa+1xwCOAy7zgexhjvjyDrEax1j4deCxwa+CLxpi7V8TdE3g78EDcYz3eAxxhjJnbnY0N838qcDBwuRd8Y2PMBX3msQpr7W7AW4F7AvsA5wLHGGPelIifXd9mQYv8H8fw2sDbgAcA1wAuBj4EPN8Yc1kk7qDKX2wgLZYWt2XRdbjIk7S4p2sgo3ecFwJ3A26Ja8AfA14NPCcR/23GmH+cUd5yOBc4CrgDToSqOBq4DnBDYC/gM8Avi/B50ST/ANtTIjAntgDnAfcGfozrME621p5rjPlgJH7T+tY3TfMPw2sDbwWeZ4z5o7X2OsC/AtuBl0fiDq38xQbSYmlxWxZdh0Fa3Ns1kNE7zhOB5xhjfglgrT0SOMlae7gxZvCPwDbGfATAWnuDqnjW2j1wo8K7GGN+C/zWWvta4GnMUWhz8z9UjDF/BF7iBZ1trf0E8JdATKgGVd9a5H9wGGO+EwStATdNRB9U+YsxFvraSIvnx6LrMEiL+7wGMnoLrLV7AfsDX/eCv4Ybee8P/DSy22OstY/BjYr/N/DGRRBk4ADgKsDZXtjXgP9hrR0ZY3bFdxscL7bW/jPu2rzRGHPCvDPkU0zZ3AV4TWRbm/o2U6ry7zG4NmCtfQHwImBP4ELg+ZE4gy//zYq0WFrcJYuuwyAt7jJPupFtg23F90Ve2O+CbT5HAzfHTUs9EXh28VkEtgF/Msb47w38He5l3FedT5Ya8wLgxsC+wBHAW6y1D5pvliY4GlefYh1A0/o2D6ryX24fXBswxhxljNkG/BnwTtw0YcgilP9mRVosLe6SRddhkBZ3hjy9G1xcfF8D+HXxe69g2zrGmK95/55lrT0KeAzwxt5y2B0XA3tYa7d4YrsXsAu4ZH7ZyscY80Xv309ba98BPAz49zllaQxr7etxI/NDYwv3aVjfZk1G/gffBowx37XWng0cB5hg86DLf5MjLZYWd8Ki6zBIi7vOizy9BcaY3wE/B/7CC74NbsTx84wkFmEqreQHuLs8/9wLuw3wnQWaTgsZTPlba9+EuwHhnsaYX8fidFDfeiMn/wkGcw08RsDNwsAhl/9mR1osLe6CRddhkBbTwzWQp3ecdwMvstaehbuD8EjgX2LrYqy1DwU+jRuJ3A43xXPM7LI6SbHup/ysWmt3B64MR4fGmD9Za98PvMJa+3DcqOpw3N2WcyM3/8UaoDsDp+Ie8XN34CnAk2eZ3xjW2qOBQ3GPi/lVTfTs+jYrmuR/aG2gePTTQ3AepotwdwK/BDg5scvgyl+sIy2eI4uuxYuuwyAtpqdrIKN3nFcB1wa+jfOCfwj3KA2stW8HMMY8tYj7DNwalS3AfwFvwz1nbp68GHip9/8lwBeAu1trPwWcbox5VbHt2cCxwM9wnoZ3A2+ZYV5j5OZ/axHvpCLeOcBzjTEfmmFeJ7DW3hB4Jk78f2KtLTedboy5b6QOJevbPGiR/6G1gTXcnfCvx90cdAHwbxR1aujlL8aQFs+XhdXiRddhkBbT4zVYWVub2/OvhRBCCCGEmAla0yuEEEIIIZYeGb1CCCGEEGLpkdErhBBCCCGWHhm9QgghhBBi6ZHRK4QQQgghlh4ZvUIIIYQQYumR0SuEEEIIIZYeGb1CCCGEEGLpkdErhBBCCCGWnv8PcOi3K8PfWr0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "dark" }, "output_type": "display_data" } ], "source": [ "#now let us plot simultaneously over wavelengths and angles\n", "from pylab import figure, cm\n", "from matplotlib.colors import LogNorm\n", "\n", "\n", "\n", "dia = 270\n", "num_pts = 1000\n", "lam_min = 400\n", "lam_max = 1200\n", "\n", "fig1 = plt.figure(figsize=(10,6))\n", "\n", "lams = np.linspace(lam_min, lam_max, num_pts)\n", "kr = np.ones((num_pts, 1), dtype = np.float64) \n", "m = kr -kr + 0 + 0*1j\n", "\n", "\n", "kr[:,0] = np.pi*dia/lams\n", "m[:,0] = get_nk('./materials/silicon.dat', lams)\n", "theta = np.linspace(0.0, 180, num_pts, dtype = np.float64)*np.pi/180.0\n", "\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m, theta)\n", "\n", "per = np.abs(S1).transpose()\n", "par = np.abs(S2).transpose()\n", "\n", "\n", "ax1 = fig1.add_subplot(1,2,1)\n", "plt.imshow(per, cmap='hot')\n", "#ax1.matshow(per, cmap=cm.gray_r, norm=LogNorm(vmin=0.01, vmax=1))\n", "y_label = [\"0\", r\"$\\mathregular{\\frac{\\pi}{4}}$\", r\"$\\mathregular{\\frac{\\pi}{2}}$\",r\"$\\mathregular{\\frac{3\\pi}{4}}$\",r\"$\\mathregular{\\pi}$\"]\n", "y_tick = [0, 250, 500, 750, 1000]\n", "ax1.set_yticks(y_tick)\n", "ax1.set_yticklabels(y_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='out')\n", "ax1.set_ylabel(\"ϴ\",fontsize=16)\n", "x_label = ['400', '600','800', '1000','1200']\n", "x_tick = [0,250, 500, 750, 1000]\n", "ax1.set_xticks(x_tick)\n", "ax1.set_xticklabels(x_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='out')\n", "ax1.set_xlabel(\"Wavelength (nm)\",fontsize=16)\n", "ax1.set_title('Perpendicular Pol')\n", "plt.colorbar(orientation ='horizontal')\n", "\n", "ax1 = fig1.add_subplot(1,2,2)\n", "plt.imshow(par, cmap='hot')\n", "y_label = [\"0\", r\"$\\mathregular{\\frac{\\pi}{4}}$\", r\"$\\mathregular{\\frac{\\pi}{2}}$\",r\"$\\mathregular{\\frac{3\\pi}{4}}$\",r\"$\\mathregular{\\pi}$\"]\n", "y_tick = [0, 250, 500, 750, 1000]\n", "ax1.set_yticks(y_tick)\n", "ax1.set_yticklabels(y_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='out')\n", "ax1.set_ylabel(\"ϴ\",fontsize=16)\n", "x_label = ['400', '600','800', '1000','1200']\n", "x_tick = [0,250, 500, 750, 1000]\n", "ax1.set_xticks(x_tick)\n", "ax1.set_xticklabels(x_label,fontsize=14)\n", "ax1.tick_params(which='both',direction='out')\n", "ax1.set_xlabel(\"Wavelength (nm)\",fontsize=16)\n", "ax1.set_title('Parallel Pol')\n", "plt.colorbar(orientation ='horizontal')\n", "\n", "plt.tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are some papers that talk of multilayered nanoparticles\n", "\n", "F. Monticone and A. Alù, \"Multi-layered plasmonic cloaks to engineer the scattering signature of resonant nanoparticles,\" Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, Chicago, IL, 2012, pp. 1-2. https://ieeexplore.ieee.org/document/6349265/\n", "\n", "Kalele, Suchita, et al. \"Synthesis and characterization of silica—titania core—shell particles.\" Pramana 65.5 (2005): 787-791.\n", "\n", "Mayya, K. Subramanya, David I. Gittins, and Frank Caruso. \"Gold− titania core− shell nanoparticles by polyelectrolyte complexation with a titania precursor.\" Chemistry of materials 13.11 (2001): 3833-3836.\n", "\n", "Voshchinnikov, Nikolai V., and John S. Mathis. \"Calculating cross sections of composite interstellar grains.\" The Astrophysical Journal 526.1 (1999): 257.\n", " Wu Z.P., Wang Y.P.\n", "\n", "Electromagnetic scattering for multilaered spheres: recursive algorithms\n", "Radio Science 1991. V. 26. P. 1393-1401.\n", "(note that this method has a problem when kr > 20, i.e. in the limit of very very large particles)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2018-09-18T17:13:57.571336Z", "start_time": "2018-09-18T17:13:57.396844Z" }, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[70, 70, 70, 70, 30, 30, 30, 30]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAEdCAYAAAAFCc3TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XmYXOV14P/vvbVvvXerJbV2Ca2gzZIAsRh8QYDBNjbYnhAnBoOdiT2OnYRE2Wb8GwiGZEgwSTye5BcHOyTgGELsmAHBZUcL2he0L2hpqfel9u0u80e1hBBSd/VSXdVd5/M8PEhVt+49fdVddfq8531fxbZthBBCCCHGI7XYAQghhBBCFIokOkIIIYQYtyTREUIIIcS4JYmOEEIIIcYtSXSEEEIIMW5JoiOEEEKIcUsSHVGWdF23dV3/9fP+flzX9T897+9v6rr+/xcnutKl6/pXdV03RulaH/k3ucQxT+m6ro9GPEKIsclZ7ACEKJKJQG8/z38eGJUP9ELSdb0JOAXcoGnam0UORwghRp0kOqIsaZrWOsDz3aMVixBCiMKRREeMS7quXwM8BlzR99Ax4A80TVvX97wNfEXTtKcv8fo3gSOapt1/3mPfBL4JzALCwNuapt3V99yvAb8DzAOywHvAdzVNOzRAnBrwP4Dlfa/bCdynadpRXdcV4PeA3wbOVmb+RtO0J857/UDXPdX3/zf6RnhOaJo2ve+1NwHfA5YB3cArwO9rmtbV97wC/E/gG4Af+FXf+ful63ot8CPgNiAG/D0wFZisaZrWd4wLeAj4ClAPHAEe1jTtX/s5b3XfeW/vO+8/AMpA8Qghypv06IhxR9d1B/BLch/Ky/r++x6QGMY5/z9yidMPgcuBW8glJWd5yH1wLwNuAkzgRV3X3f2cUwPWAduAq4BVwE8BV98hv913zkeBhcBfAo/quv61QVx3Wd//v0BuuG5F37VvBH4BPEsuGfwcMB14oS/BAfg28LvAg33n2U4uKRvIPwGLySUkN5JL0j53wTGPAA8A3wEWAU8DT+u6/ql+zvtjcgnhHX3nnQ7cmUc8QogyJhUdMR5VANXALzVNO9z32OF+ju+XrusB4A+AP9M07W/Pe2r72T9omvZPF7zmq0AXucRi/SVO/T+AlzRN+855jx04789ryVVw/r7v74d1XZ8L/Anwj3let6Pvqe4Lhuv+O/Ckpml/c95rfxM4QS5J2UkuwXlC07Sf9B3yF7qur+TjScv5159DLhHRNE17o++xrwPaecf4ySVR39U07ed9Dz+i6/qKvq/ttYucd3bfdW/WNO31vsfuAz64VCxCCAGS6IhxSNO0nr4ZU+t0XX8deAt4QdO0g0M85ULAS25o56J0XV9CLnFZAtTx4ZDKNC6d6Cwnl8xc7HwV5Cohb1/w1FvA7+i67tc0LTHE60IuEbpS1/VvXeS5ObquHwMmAxsueO5d+kl0gAV9/9909gFN07K6rm8FQn0PzQbcl/ja/miA856LR9O0jK7rW4BgP/EIIcqcDF2JcUnTtAfIJRKvAtcD7+u6/o1hnta+2IN9FYpX+p6/D1hJLpGwyX2gD/qc/Tx/ridlmNdVyQ3FLbngvznAS+ddZ6D48o07n2OUfl4nvThCiCGRio4YtzRNex94H/grXdd/BHwd+D9DONU+IAWsAfZc5Pn55Bpq/0TTtP0Auq5fzcAfztv6zvk3Fz6haVpE1/Vmcknai+c9dR3wQV81Z3ke1830/d9xwSW2Ags1TTtyqeB0XT8NrAb+73kPrx7ga9rX9/+r6BuC0nXdSS7pPNsgfQRI931tey/42s7/+/nOPn41ueSVvj6kFcD+AWISQpQxSXTEuNPXz/EA8J/kZh1NAq7lvJ6awdA0Labr+uPA93RdT5L7oPUBt2ma9n1yfS1p4L/1HTedXAPxQFWNh4CXdF1/glyjbZpcgrCxb5jt+8Djuq4fBt4k14D7X8nN/CLP63aSm6F0s67re4G0pmk95Hp0XtF1/a+BnwBRctWcu4FvaZqWBB4HHtJ1/QC5oajPcF6vzSXu1WFd1/8T+Lu+CloHuZljFWfj6kvSnuw7dwe5fqC7gc+Sa6i+2HmP6Lr+y/PO20Zu2C90seOFEOIsGboS41Gc3If2s+SqCM+T6+24WD9Kvv6MXKPst8lViV6hb0aTpmmdwK+T+5DeC/wv4PcBq78Tapr2Crkp2KvIzRDbDPwmuWniAP+bXELyx+QqJX8IrNU07Wwj8oDX1TTNIpcYfZFc0rej7/E3yCVOlwPvALuBvyaX8Jy9/g+AJ/se30kuCfufedyre/vu0UvkErTT5JLD1HnH/Am56eFP9MX+68Cva5r2sUbk89zXF8evyPXznAZeyCMeIUQZU2x7qEPwQggxsL7p/gfIzYL7vWLHI4QoLzJ0JYQYUbquXwc0kKsehYDvkhtWe6p4UQkhypUkOkKIkeYA/pTcNPIsuWGsGzRNu1gjtxBCFJQMXQkhhBBi3JJmZCGEEEKMWyM+dPXYY48p5FZ0jYz0uYUQQogSVQE0/+Ef/mFBhkm2bdvmAgKFOPcYF1++fHm2vwMK0aPTBJwswHmFEEKIUjaV3DIOI+q3fuu37tq7d+93YrGYJDoXCAaD8YULFz7xox/96LlLHVOIRCcC8C//8i9ks/0mWeNaKBQiGo0WO4xxT+7z6JF7PTrkPo+OkbzPLpeLe+65BwowkrFt2zbX3r17v9PS0uIFzJE+/1gXjUa9wHe2bdv2i0tVdgo26yqbzZZ1olPuX/9okfs8euRejw65z6NjDN3nQF8lR5KcS+i7PwGg92LPSzOyEEIIIcYtSXSEEEIIMW5JoiOEEEKIcUtWRhZCCCHEsKxdu3ZuU1NTwLKsj0yv//a3v72jv9fdddddkyZPnuz7wQ9+cLRQsUmiI4QQQohhe+mll5pffPHF9mLHcSEZuhJCCCFEQcyaNcv/xBNPLJk5c6YPwOfzqY888siiNWvW1K9atarqhhtuaJw7d27Vk08+ufTJJ59c6nK5lJGOQSo6YlxafGOAaQu8eHwqG38ZoflgutghCSHEyFBUVG+NazQuZaW6s9jWkF9/9OjRxKuvvnrmvvvum/nwww/v/+pXvzqtra0tuW7dug6AKVOmtMrQlRCDtHxNkLkr/Gx7NYrHr3LjPVWsfyHM0R2pYocmhBDDpnprXFU3//UVo3Gt3le+u9tKdua14NAtt9zSdNNNN006+/e2trbk97///YMvvvhi+2WXXVaxdu3aeT6fz/Hwww/vK1zEHyeJjhhXZi/zMe+qEO9uvZ1O00Nq63+QjHZx5R0VNB9Mk04UZBsaIYQYNVaqO9v7ynd3j9a18j325ZdfvmSPzttvv93xwAMPzH7llVfORKPRUV38UBIdMW64PAqf+HQd+09ptB+L4gj4qPjkQ3yw/s+Z19XDomsDbFsXK3aYQggxPLZFvlWWUhAIBBx333331M2bN3ded911EzZt2tR95syZNIBt2wX/7VOakcW4seT2uWStKna/8AbJfc8S2/Ik6Q90AkseYMdrSeZfGcAXlG95IYQYTffee++05ubm+I9//OMTGzZsaL///vtnOp1OBSASiWSrq6s9qlq492ap6IhxwVdbxbwlMd5dNwGj+/i5xxP7n6OycRldyq2EO99kzid87H4zXrxAhRBinLr11lub1qxZM/n8x956663WpqamwEMPPbQP4Lnnnjuzdu3aii9/+cuTn3766eZNmzb1LF++vPbxxx9foigKDz744K5sNjuiVR5JdMS4sGjNIqKxbj54d9tHnzDTJPY+Q3Dp1zm6+1XmLPFKoiOEECPs0UcfPXip555//vmWs3+2LItHHnnkwNm/R6NRs7/XjgSp44sxz1XVyOzLWti7PnHR57Ot27HNFGc6F1Dd6KKqQfJ7IYQoF5LoiDFv7o1LsEyToxuPX/wA2yJ94m2suptpO55h+uXe0QxPCCFEEUmiI8Y2dyWz5nZwaLuF1c+ExfTJt3BUz+LEIS8zJNERQoiyIYmOGNMqFyyjKnCaQ+ub+z3OSnRgdB6gNbKMynonoRrHKEUohBCimCTREWOX6mLaIgdtp73EewdeojzbtgOjYhU9bVkmzXaPQoBCCCGKTRIdMWZ5mlYwpWE3hzblt1lupnUHzqrptBxXmDjLU+DohBBClAJJdMSYNXXZLBxKipPvJ/M63oq3YcZa6OiZzsRZbpQR3yNXCCFEqZFER4xJamACM2a10XxIwRjE2lKZ1h30mFfhcivUTh6VzX+FEEIUkSQ6Zc5foVI1YeytKxOafRUTqt7nxI7ooF6XbduJUrOEjlOG9OkIIUQZkESnzC2+Icjqz1UUO4zBUVRmLg2RiDroah64Cfl8RvdhANpagkyYLomOEEKMd2PvV3kxohpnuAlWO1Ad9LsOTSlxNVzOtIl7OfxeZPAvtgyM7sN0u2cyb+leFAUKv3euEEKMb2vXrp3b1NQUsCzrI++o3/72t3f097q77rpr0uTJk30/+MEPjp597JOf/GTtNddcU19XV+c1DMM+evRo5JlnnjnV29trDCU2SXTKmC+oUlmf+xaomeiiszlb5IjyU79oMVXBVzi6PYpKYNCvz3buJ9y4DJd7H1UNTnrahvSzI4QQ4jwvvfRS84svvpjfNNh+eDwe9Re/+MXpgwcPxlwul3rvvfdO+9rXvjbj8ccfPzyU88nQVZlSXAGmrfkiiRh0ns5SP2VsNOYq7gpmzkvScsKR19o5F2N07oeKBfS0mzRMGxtftxBCjEWzZs3yP/HEE0tmzpzpA/D5fOojjzyyaM2aNfWrVq2quuGGGxrnzp1b9eSTTy598sknl7pcLmXdunUde/bsiWYyGTsej5tvvPFG+9SpU4NDjUEqOmXKUTmNCZPTdCcXEW8/QP0Ug/0bix3VwLxTr6apdhubf9k15HMYvccA6Gzz0zA1y8HN+U1PF0KIUqAo4K9UR+W3tETYyg5neP/o0aOJV1999cx999038+GHH97/1a9+dVpbW1ty3bp1HQBTpkxpvXDo6kLz588PtbW1XXzX5jxIolOmHMFGagIHOXJoMpZyJfOmvFnskPIyZekUHMpuTu5ND/0kfX06PeZU5s8/MHLBCSHEKPBXqq67H2y4YjSu9fO/bN8d77Xy6mu45ZZbmm666aZJZ//e1taW/P73v3/wxRdfbL/ssssq1q5dO8/n8zkefvjhfflef8GCBcFrr7228Yc//OGhocQPkuiULV91LZXBfbQe9OGasZJQzbt4Ayqp+NCGg0aDo3oW06d8wAfvZwa1ds7FZDsP0OO/goraI/iCKslY6X7dQghxvkTYyv78L9t3j9a18j325ZdfvmSPzttvv93xwAMPzH7llVfORKPRvKa+zJ8/P3D//ffPevrpp48dPHgwnm8cFxow0dF1/Sng14DMeQ/foGnalqFeVBRfqCGAZUHvmV6CM2aRSljUNbloPjiMSkmBhWZfRWP167z8fHjY5zK6D5GecxvJ2HPUT3Vxcl/pft1CCHE+24Z8qyylIBAIOO6+++6pmzdv7rzuuusmbNq0qfvMmTNpANu++MDYggULgvfff//sZ5555oMtW7YM600/34rODzVN+85wLiRKS6DKTSrpwIh3oqguYr0QrC7hHb0dHmZe7iEeUWg/Mfyfb6PnKKhuOlqcNEx1S6IjhBAFcu+9905rbm6O//jHPz7xxS9+MXv//ffPfOSRRw4YhmFHIpFsdXW1R1VVLCtXWV+4cGHw/vvvn/3ss88eH26SAzJ0VZ4UB/6QQiJiY6fD2GaGZMKNP1S6k/Dck1cypWEbh98bfjUHADONGTlJl9rApKmpkTmnEEKUsVtvvbVpzZo1k89/7K233mptamoKPPTQQ/sAnnvuuTNr166t+PKXvzz56aefbt60aVPP8uXLax9//PEliqLw4IMP7rr99tsneTwexz333DPjnnvuOXeuhx56aG9HR0eGQco30fkNXdd/A2gBfgz8taZp0tQwRqmBeryeKIneXBXDSnSQTAXwVwxuO4XR1LDwCqqCz3N0x5Ab7z/G6D5Mj2ceV0xuGVMLJgohRKl59NFHD17queeff77l7J8ty+KRRx45NwskGo2aF772scceG3Lj8cXkk+g8CTwIdAMrgZ8BFvDX/b0oFAqRzY6ZIcSCCIVCxQ7hopTamXgdnWQTuRiVdA9Zq4b6mu7SjDkwkZmzW2g7oaKaAS4McagxK4lTxB2fRVHeYMrsSrrPSO4+kJL8/hiH5D6PjpG6zy6XrMdVygZMdDRN237eXzfquv4o8BsMkOhEo9GyTnRCoRDRaGlWSLwNVXgcrXR2p4hG4/ijrcTTlUz22yUZc2jm7TTVrGf9c11Eox/tpRnOfVayu6he9DW6WiBYl+XEwZGrFo1Hpfw9PZ7IfR4dI3mfJdEpbUNpypBfe8c4NdiIzx0hEc79U1qJDtJWI/6KEuzRUV1MX1KJaRicOjCyDcN2qgcz0UFnZxUN02SDTyGEGI/ymV7+ReBlIAosB9YCf1fguEQBOQIT8HqTxCO5phQz3kFaXYbbq+J0KxiZ0tnl0j1pBdMmbOPI1lhBemiMrsN0u6Yz/YrukT+5EEKIosvnV/hvASfJJTr/AvwQeLyQQYnCcgUDuN0mib5Ex0p0kFamABAosapO3YKl1FWe4tCWIa8V1S+j+xBhcxm+kKO0p9cLIcpVPBgMFuYNcJzouz+XvEf59OhcN6IRiaLzh3If6Mnoh0NXpuUjm7HxVzgId5bG9CM12Misue20HIdod2FiMroPk/X8BrEei4apLmI9pfG1CyEEwPLly7MLFy58AvhOLBYLFDueUhMMBuMLFy58Yvny5ZdsCpZ1dMqN04vPlyKbgUwqN0RlZ+NY2STJmBNfCVV0/DNvpKlmPZv+vbdg1zAjp7CNFJ3tPuqnJjm2S9bUEUKUlh/96EfPbdu27ReAJDofF+8vyQFJdMqO6q3G5w6fG7Y6y0p2kUh6CFSUyPCN08v0JTXYZpYT+wqZfNiYPUfodk9i6pRYAa8jhBBD1/dhXrjf+sax0vn1XYwK1VuFx9lFImJ85HEr2UMq5S+ZmVeeqdcxs3E9hzdHC76QX7brML3phdQ0OnG6lMJeTAghxKgqjU81MWpUbzUetZNE5KOrBNipHpKZCvwlUdFRmLh4EVWhFva/V/gePKP7EDHHJ7AsqGuS9TCEEGI8kUSnzKjeKrzOno8PXaW6SRnVJVHRcU1YzOxpezixL3turZ9CMnqOYiteulod1E+RREcIIcaT4n+qiVGleqvxuiPnZlydZSV7SJv1JVHRqVpwDZNq32ff+sjoXNBMY0ZO0NVTS/1USXSEEGI8kUSnzCieKnyexMeGrqxUD2km4QuqKEVsU3GEJjNnfhfdrTYdJ0dvCxGj6zA9idk0TJUVkoUQYjyRRKfMqN5KvL40ieiFQ1c9pO2JqA4Fb7B43xb+ORrT6jew953RnVxgdB8iYq/AG1AJ1Ra/qiWEEGJkSKJTZjxBPw6HTTJ24dBVN2kjhG3bRevTUbxVzFzix8xkOLF3dNezyXYfJuuYQrTHpkH6dIQQYtyQRKfM+EO5f/ILe3TsTBTLsEjF1aL16fhm38LsCW+wf0Ok4FPKL3R2g8+ujpBs8CmEEOOIJDplRHH68fpSZNP2RTfutFK9JBKuolR0FFeQ6Usb8brDHHwvMerXh74NPqNTZOaVEEKMI5LolBHFW4XXFSERvfiUbSvVTTLpLUpFxztTY86k19i/MXZua4rRZnQfojd7BVUTnLg8snCgEEKMB5LolBHVW4XH0U0yevFxISvVQyodHP1tIJxepiybRcjfyb71xduk1+g+RExZjJlFqjpCCDFOSKJTRs6uinypRMdO9pDMjv6igd5pN3JZ01sc3hInFS/8AoGXYkaasYwsHS1uJsyQPh0hhBgPJNEpI7mKTk8/Q1c9pM3a0R26criZtGwRNRXNvP9usTfVtDG6j9DZM5HG6ZLoCCHEeCCJThlRvVV4LrIq8llWqoeUNWFUKzre6RqXTXmXYztTxHuLV805y+g+RHdyEXVNLhzOYkcjhBBiuCTRKSOKtxqvJ/GxxQLPspJdZJiE26vidI9CM67Ty8RlS2ioPsaet6KFv14ejO7DRJSV2BbUT5GqjhBCjHWS6JQR1VuF15u+ZEXHTHSQMmuBD9fbKSTvzDXMm/Iax3YlCXeO8sI5l5Db4NNDR4uDRunTEUKIMU8SnTLi8gdxu61LJjp2Kkw2o2JkKXifjuLyM2npAuqrT7Dr9WL35pzHTGP0HKWzeyITZsjMKyGEGOsk0SkjvnOrIl+qemJjxjtIxAu/aKB31m3Ma3qVI9uTRLtLo5pzltGxl67kYhqmunFIriOEEGOaJDplQnH58XlTmIZNOnnpBfmsRAfJlK+gFR3FXUHT0jnUVjaz643S6M05X7ZjLxH1KkwDmX0lhBBjnCQ6ZUL1VuNxRT62meeFrHg7qUwlgcrCfWv45n2OuZNf4vDWREnMtLqQ0XMU24K20x4mzvYUOxwhhBDDIIlOmVC81XgdHSQi/Q8TmYl2Epl6QjWFmVutBhuZsngS1aFWdr9ZQr0557NNsl0Hae+eyqTZUtERQoixTBKdMqF6q/A6OoiH+090rHgH8exUKuoKM3TlX3A38ye+wL4NMRKR0qvmnGV0vE9XeiU1jS58QfkxEUKIsUrewcuE6q3C5+oiHh5g6CrRTtyaSrDagTrCuY6z5jJmLgSfO8yet4q3p1U+Mm27SLmXEAvbTJSqjhBCjFmS6JQJ1VuN1xMhMUBFx0x0EE/Wo6oKoZqRzXSCl9/N3In/ye43I0XboTxfVqwFM95Oy+kqpsyVPh0hhBirJNEpE6q3Cr83MeDQFWaGTCJFMq5SWTdyfTruSauYc9kpbCPBgU2JETtvIWXbdtEWuYLJl3lGvLolhBBidEiiUyZUXyVeX3rAoSsAM95ONOKjYqQSHYeHisWfZc7E19jxagTTGJnTFlq2dSc93ICiKkyQaeZCCDEmSaJTJN6AitM1CvtJ9fFXOFFVBq7okOvTiSaqR6wh2Tfn08ybup5YT5pjO1Mjcs7RkO06gGW5aTnpYco8Gb4SQoixSBKdIln9hQrmrvKN2vX8QRvTZMB1dADM8EkS2ckjMnSl+uupu3wFMydvY/OLEezSbs35KCtLtn03bd1zmDrfW+xohBBCDEFhFksRA/J4VXzB0Wn8UNwV+H0xElEb8kg0jN4PSHA7FXUbh31t/6L/wsJJ/8bJ/Slaj2WGfb7RljmzmY4Jn2N55fvUTnLSdWaMjLsVidOt0DDVRc1EF6EaB76giupQsCybZMwi0mnQddqg/WQGq7R2/hBCjFODSnR0XfcBe4A6TdOqChNSeXC6Fdze0Rm6Uv21eF09xHuzeR1vhI8TSzfiC6q4vcqQZ0g56xfRNNdLfU0LL/y09LZ6yEembSdZHqD1pIsZV/joOjM2v45CcvsUZlzuZfrlXiZMc2MaNt0tBuFOg542A9O0cTgUfCGVaQu8LP2UC8uyObU/zYH3EnScyu/7UgghhmKwFZ3/CTQDdQWIpaw4nApu7+iMHKq+OryONuKdef4KbaSIdqWxTKisdw7tg0h1EVx8Dwsn/R/efydGrGeM/vpupMi276bZMY+Fl+9i67poXlWxclBZ72D+VQFmL/WRiFmcPBLg/f0zCGfmonjrUFwBFNWBbSWxEmHMM80YG49g9e5j4jSbWUu83PpADe0ns2xbF5WERwhREHknOrquLwNuA34X+FnBIioTTpeCa5QqOg5/HT5nJ915NCKfle05RU9vJQ3TIkP6APLNu5PZU3ag2omSXxxwIJnTm+mo+zze4B4aprpoP1HeH8hVDU6W3RxkylwPLad8bNy8lC7lJhTFjaEcw0qdxOw+jp2NgW2hOH2o3mocFU14pt2A4vDQ07qN9a+9ztaXD7L4xiC3PlDD4W1Jtr4cJZuWTFIIMXLySnR0XXcC/wB8s7DhlA+HW8HtG62hqzp87g/ymlp+ltH7AV2R6TTOaGPvu4Nb98ZROY2aBauYN+0vWf98BCM7tj+4Mm07MJSvceaEh5mLfWWb6PhCClfcVMGspT6aT9by+va7iKYaybZsJ9P6D2Q79oI5UB+WgrP2MjxTryd05YMYvcfY/OazHNx8nNV3VvKZb9Xy5rO9dJ2WXighxMjIt6Lze8BuTdPe1HX9k/m8IBQKkc2W5wfCWaFQ6JLPudwOvEFXv8eMFEdoAn5fAivjJhTKrwFaybTRnb6ZZdN3EqoI5T9co6g4l3+dJU3/RPtxg87jLkIh19CDz8No3EO7YztnXCtYuvhdDrxjj5m1gEaCosJlq1zMu9pNT08N7+z9Er0dHsxTb2C3bUG1sngBr98D5DENP3MGjjyDceol1Om3ErrmTzFbNvLWM//O5ddb3Pb1Wra/lOHk3jK6yRcYje9pMXL32eUq7HucGJ4BEx1d12eRq+QsHcyJo9FoWSc6oVCIaPQSjasKOJwBXB710seMoCpPCK8vQ2drjGg0zw+PxH68sW/g8ig4/Ul6WvN7nXfOHcyccoTKUAf/8eNuEtHCbtzZ730eQc6jr9E24fcxjXeonZ7l6I6xsx7QcEyY7uKqz1bhDvjYfvTzNJ+oIrH/5xgd7w//5NEodP49jqpXCSy5H2XpH7Lx9b+j5VgLV99ZicObYfebY3vYcyhG63u63I3kfZZEp7Tl0w17LVAP7NV1vRX4d6BC1/VWXdevLmh045SjL710uUfnN9Zgde6fOdo9iIZgM02y7Ti9PYG8VwV2VEyl+vIbWDjtZba8FCnp3ckHy+g6iJkIc+xIA5et8Bc7nIJzuhWu/EwFa+6rpTN9Fa9t/TrN67cTeft7I5PknMfs/YDI298j27aLimv+lFMdS9B/0sPl1wVYdlNwRK8lhCg/+SQ6PwNmAEv6/rsfiPb9eWvhQhu/nL7cQoEOh30u6SncxbyEQglSCQbd5Jlu3kRXYh6N+SQ6Dg/BFd/k8olP0XkqxeGtySEGXLrSJ9/iVPx2Gqa4qJowfpegapjm4rPfnsCkBRN55/3fYqtu0vXq/8Du2FG4i1pZEnv+mfjunxIl44WoAAAgAElEQVRY9g16HDfz6lM9zLvSz1JNkh0hxNAN+G6taVoSOPeppet6N2BrmtZayMDGM3ewBshVV9xeNa/ViofK4asj4Oki0jX46lG2ZQudsW+x7LJtON0KRubSiVJgyX3MnLyNuupWfvmvkeGEXLLSJ94gPfdznD7uZuFqP+v/fXx9nQ4nLL2pggVX+znaei17ttQT2/0kVqp71GLInHwLK9lFaOV3iB7zo//0BdbcW0M8bHJoy/hLnoUQhTfohVw0TXtTFgscHleo+tyfC71ooOqvxe9qIdo5+H4pO5ug+WCKTNbHnOWX3q7Ce9lnmTCrmkWz3+bd58Njd82cAdiZGOlT6znS8klmLvbhrxg/O6jUTnZyx39rZPqyRtbv/gqbnz9KZPMPRzXJOcvoeJ/oxsfwztSIuG/h7ed6ufKOCprmyn5jQojBGz/v1GOIO1gBgG0ruH2F/SdQfXX43a2D6885T/rUBo53XMeC1SGUi+Rknmk3UL94NSvn/BP71sc4uT89zIhLW/rYOsLOT9HdprBgdaDY4QybosKST4X49G/V02Os5JVXruXYf/yQbOv2osZldB8muvkH+ObeSWvkSraui3L9lyupnTx+hwyFEIUhiU4ROAMVWJaDTNY9ChWdOgLeniENXQFkW7ZyZF8Qb8jN9MvPr+ooeGd/mvoVt3HlzB9w+lCCba/ERiboEmZGT5Nt282hk1cyd6UPX3Ds/ghVNTi5/ZuNzL26gU17v8SGn58isuUfsbOlMdPJ6NhLfPuP8C/+KoePzePw1iSf+vVqvIGxe8+FEKNP3jGKwOUPYlouslk3rgJvA+EI1BDwx4dc0QEIb/tnDpz4JKu/UMPkJbNwTVxO6Jo/ZvqqOVw7/69oPx5j/b+Hy2ZrhOSB5+lUP0dvh8riG8deo6yiwKJrg9zxrXoSjiWse+U6Dj//D2RbC9hsPESZM5tJ7Hma4PJvsn1jPZEuk+u+WHnR6qIQQlyM1IGLwO33Y5gOsoan4BWdYG0AVbWHXNEBsNMRdv78ddTPzOPGLxwgHLNxKc/i98XY+VqMPW+XRgVgtJjhE2RbtrE3cyPXXf0a+zfECee7j1iRhWodXPvFeioavGw98GmOvL6BbOvLxQ6rX+njr6EGGgh+4nd4+9//O3d8w80VNwTY9Xp5fd8JIYZGEp0icPr9mIZC1vAWfGPPihqVTFohnRheucWMnmbLv5zmxHQfdZN6sCz4YFeSdLJMyjgXSOx/nvANf07zB++w8vYKXn2qp9gh9U+BeasCfOLWStrD81m3bgq9254qmWGqgST3/Qxn1Qwc836bt//tr7jpN6toP5Gl5ehAW04IIcqdDF19xCjUw1UnTo8bI2tjmN6CVnQUTyXBQJRo98hNX28/nmTfhgQHNiXKNskBsGJnSB1dx77W36BhqotZS7zFDumSAlUqax6YxLJb6thx+NO88XQHPZvGTpIDgG0R2/q3OIKN9HruZNebMa77YqX06wghBiTvEn3cU64hdNWDBb+O6q3BoWYw0iZZ01fQWVeO4ET87g4iHeN7JlSxJA++QMpsYNeOGaz8dAW+UGn9OCkqLFgd4nPfmYhaMZuXX1rNvmefJtu+u9ihDYmdjhDb8rd4Z61h/4F5RDpNrvpcRbHDEkKUuNJ6Zy4iR6ARZ+1cUPLb9HKoVH8dKinMrEnW8he0ouMITCDgaibSXb6bIxaUmSa+88ec5ut0tzv55JerUErkJ6quycUd35rEFVo9Ow/fwqs/6aT7vX/FNsb2ontGz2GS+36Gf/HXWP8rm0mz3cws4WqaEKL4SuRtufgUdxDF4cZR0VTQ66jeKlQrjJG1yZoBXAVMdNTgREL+DnrbJNEplGz7LtIfvMH25v9KsNrJiluKu+u0y6Nw5WfruO0bdYRZwUv/uZK9zz6N0bGvqHGNpNTRdZjhk1jT7mfry1GuvL1iXC3eKIQYWfLu0Ef15ErgzqqZBb2O4vThIIWRsTHsYEGbkd2VNQQDcUl0Ciyx72ek4xbv7bmDOSv8LLp29BcSVFSYuyrAFx6czMSFk3nrvdt596kdhLc/C+Z4G7q0iW//e5zVszjefjWdp7NcfWdlsYMSQpQoSXT6KO4AqpLCUTWjsNdxenAoKcyshVHgHp2qBheWBeFOSXQKysoSfe+vCBsL2fje1SzVgixYPXo7nE9d4OHO353M0jUNHGjW+L9PBzjxq3/AjJwctRhGm5XqJrH7KfwLf42N67w0THUxu59tSoQQ5Uuml/eZNfM4k+pe4d3ezxf0OorDi6qGMTIWWXchp5crVNUYRHpUrLGxxMuYZqfDRDf+L5TVf8SGzXCltoFglYMtL0WxC7Bnq6LA9EVerrixhlCNypGWa9n7qkF077NgpEb+giUoc3oTrsZlOGb/Ftte+QtW3BKi+UCaVLxwm+QKIcYeqej0qarsJehrxxGaDA534S7k9OBQMhiZvllXBerRUX21VAQ66G2TdUZGixU7Q+Tdh+nMXMfb732GaYv83PaNGirrRq7B3e1TmH+Vnzt/bxJXfaGe9sz1/OpX1/PeUy8T3fXzsklyzkrs/imqv44TndcS7jBYcWtxe6SEEKVHKjoAKAQDYXz+LAoZnJXTMLoPF+ZKDg8Ox9lEx4vLraCojPhv/Y7gRELe05xuGduzbMYaK95G5O3vYS3/bd58//dYWPcjPvttFwc3J9jzdpxEZPD/0A4nNM5wM3NpgOkLvSQzFZzouIqDrxvEDr6CFW8vwFcyNtjZGIndPyWw9AE2rdvO7V9zcWRHUhYSFEKcI4kOuf6coLcDRQF39giOUFPhEh2nF4dq5BIdI9dT4PYOf+XiCzkqJhPyHZZG5CLIDWM9Rnb2bezijznR9S4Lpr3KXQ/6OX0ozcl9aVqOZYj1XHxM0e1VqJrgpGaii0mzPUya7cHGQVvvQjbuvZzmnUdIH38eOxMd5a+sNGXOvIe76WqUyffx/rt/y1WfreAXT3Ziyre+EAJJdABwB0N43bkPDZ+znV5X4RpJc4lOFiNjkDVdALg8KunEyDbSeGsn4PPulESnWGyL1OFfkWneSPqyz9DLQ1Sc3ktT6HWu+FQbqz9vkUlZJCIW6USuyuN0K/iCTvwVCqapEI1V0RWfx+ZDc2k51EXqxCaynfrIl//Ggfjup6i68TH2H1jC9EUHuOKTQXbosWKHJYQoAZLoAJUT/Nh2glhPFp+7G8VVuOnBisOD02FgZm3MTK5Fyuka+T6d6ok+TFMhMoxdy8XwWckuErv+ieT+50lMXkl3483s656N15ch6DqO19GFy5EAVcUyQ2TjlUSOVhJpT5Hp2E+2Yx9G96/Ayhb7SylpdqqHxL5n8c3/dTa/vJYbvhTgyPYkUfn+F6LsSaIDVDZ4iKdcRLra8HvCKK6agl1LcXpwOEyMrI1pmFhmbpG3Eb4K1fUGvR2q/PJfIuxMhPQHOukPdFBUVH8dHf4GFKcPxeHCNrPY6V7MeBt2OlLscMek9PE38Ey5hh7PFzl9+N9Y+ekQr/1zb7HDEkIUmcy6AipqVWKxCuJhE583glLAoSuc3nOJjm1lMQxlxCs6aqCB6lALnafLawbOmGFbWPF2jI73ybZsIdO8gWzLFozuw5LkDItNfNdTuJuuZvv6OibN8tA011PsoIQQRSaJDlBRYxGN+on3mvh9iYImOorDg8NpYWYBM4ORVXGOcEXHUTGFSt9JOk8mRvS8QpQ6M3KS9PHXsKbfx553Eqz8dAiH1K2FKGuS6AAVlVkiYQ+xXhO/P1XYRMfpxemwcxUdM4thqLjcI5vouGsmEfJ30nVG+jpE+Unufw7VHeLwqatQVYWF14z+lhxCiNIhiQ4QqkgQ7VGJ91oEghlUV+GWklccbhwuGzNr5yo6hgPnCCc6dU0BLAuZcSXKkm0kSex9Bvecu9iiW1xxfZBAlbzVCVGuyv6n3xdUcTpNIt028bCJ02Xj9hVqR3EF1eVEVcHI2NhmBsNwjniiU9to09vllq0fRNnKNG/A6PmATueXaDuRYcWtFcUOSQhRJGWf6PgrVWxbIdGTIh7OZQaBQIFWVXV6cKi54STDONuMPMKJjtNLdXWEztMybCXKW3zPT3BPXMG2DROYMs/DxFkF3NpFCFGyyj7RCVQ6SGUCmOkYlgmJKPh9cVBGbn+isxTHh4nOuaEr0zmiPTrOymlUBU7ReTw8YucUYiyyomdIHX0Zc8p97N+UZNXtFShl/44nRPkp+x/7QKWDZKb63HL6iYiF1x0uSENyblXkXLUoN3SVxjRdI1rR8dZPIejroPNUesTOKcRYlTz4HygODwdOrM5tiHplAZeOEEKUpLJPdPxVblLZKqy+RCcVN/G44oVJdBweHGquQdg0+mZdmW5c7pH7Z5gwI0Q266S3XRqRhcBMk3j/X3HN+ALbXrdY8qkg3kDZv+0JUVbK/ic+WO0hmanCTuVWUE3FDNzOWMEqOipxbMvObThoZjBM94hWdOonW3S2ubFHdo9QIcaszJn3MHqO0mp9id52g2U3B4sdkhBiFJV9ohOodJJMBbCzucX1UnELt6NQQ1ceHHYCI5vLQmwrg2m5R6xHR3H6qK3tpP24rIgsxPkSe36aa0x+t47ZS33UTpZVBIUoF2Wf6PgrFBKxD9/0colOFMVZgLF8hxeVRK6aA7mhK8s7YhUdZ/U0qgMnaTvcNSLnE2K8MKOnSR17hWTDvRzZkWLV7RVQqFUkhBAlpbwTHQV8AZP4edsLpRIW7ov06IRqHVzzhcrhXc7pQSWBkekbVzIzmCOY6NTNaMShGnScKtD0eCHGsOTBF1DdQfYe+gRVDU5mLfYWOyQhxCjIq36r6/oPgTuASiAK/Bz4A03TxvQnqi+g4nDYxMMfrjmTilt4XEnUCxKdmkYnUxd44PmhX09xenEqyQ+HrswMpl05YolOwwwvvb2BDxMpIcSHjBSJvc8QuOKr7HxrB8tvCXFyf5psWn5ehBjP8q3o/C0wT9O0CmAJsBj4w4JFNUpyiwVCoid57rF03MLtSqFcsA2Ey6PicA4vIVEcHtzOKKm4BeQSHcPyjViPTsPEFO2nRuRUQoxLmeYNGJGTnIx/gUzS5opPyj5YQox3eSU6mqbt0zQtft5DNjC7MCGNnkClg2Q6gJn8cOwqFbdQVRtP4KOrqLo8Si7RGUZOojg9eJwxUrFcooOZwcQ3IhUd1VdHXdUpzhzsGfa5hBjPErt/imvSara+XcGCqwNU1I384qBCiNKRd4+OrutrdV2PAu3AFcDfFCyqUeKvcJDKVGCnus89drba4rlgrQ2XN5eMOIbxnqg4vLjdCZLx3FYTtpXBtP0jkujUzpqKxxWn9VD3wAcLUcbMyEnSx18jUvk1mg+mWflp2QdLiPEs7zmWmqY9Cjyq6/p84CtAa3/Hh0IhstnS3m+put5NMluLV+3AEwqde9w0FQIhF6HzHguGXABUVoXI5rno8PmvB3D4Qvg8aZJG7tyK24llB1FVhcrqENYw1vibPK+acCSO2xHHHRr4+PHkwvssCmfc3OvmdTiaruLAoZVot+9izpIqWo+Wzi644+Y+l7iRus8ul2tEziMKY9CLSWiatl/X9Z3AU4B2qeOi0WjJJzruQB2pbDWxrp1Yyei5x9OpKlweg2j0w8dspQJwk0zHSUatAc8dCoU+8nqAgK3idiUIdyeJRpM43WGC5HqBUukY6cTQmyLrJqZoPeX82DXHu4vdZ1EY4+teR3HvfQZ70T3s2bCNy290cnRPL1YJ5Drj6z6XrpG8z5LolLahTi93AHNGMpBiqJrgIpasx0r3fuTxVFLF4/swmfHOug23P9ezM5yGZMXhwePJnOvRsc0MBrlmyGFtA+HwUF/bSstheXMUIl+Zk+9iRVs41vUZVIfCwtXSmCzEeDRgRUfX9SBwN/ACEAYWAX8GrCtsaIXlcEFlnU336RouHDNKJ8Dj/fAx3/wv4A7uA1I4hrGgquL04PFmzvUBYWawrNxaHsPp06mbMx2PK0zLvs6hBydE2bGJ7/4JFdd9j21vv87VaxSO7kySiAxcsRVCjB35lBFs4NeAY+TW0PkF8CLwnQLGNeIUTyWKt/rc32smurBthXDXx0uOqbiNx5sbdlOcfhSHG5cn95zDNfSExOlx4nTaH5lebtlOLNMeVqLTNL+ant5a0nHZyFOIwTDDx0mfeJMu7310njZYvkZ6Y4QYbwasT/RNK79pFGIpGGftPIIrvg22RXTDo5jRZuomuwj3+DESkY8dn4qbhOrTgILizc3IcPXNNh/O0JXHl2sA+HDoKncNI8uw1tKZOC3DmZPugQ8UQnxMcv9zVGp/wY5tc7nl88c4+F6C9pOl3V8ohMjfuN8ConLOElZ+aQl1xs8wO7YQWv3HqP566ia76O6txUp9fN2ZVDSd2wbCW4nqqQLA5c41Cg8n0fF6DSwL0qm+lZGzuaWJjKyC0zO08zo8Lupq2zm9r3fgg4UQH2NnYyT3/ZzMxK9wcGuWVXdUoMg+WEKMG+M60albuJhb/kuSeu9GPrFqP6sW/RIz/AG++XdR2+Qikp2LFf/4LPlkOIHbGUP11qB6cvtbuVy5KsxwenS83izppJobDASwDKxMHCPrwDnEIbFJi6ZhWQ5a9p0cemBClLn0iTexEh0cPHMLgUoHcz7hG/hFQogxYRgf26Vl6uVVzL2yhsYpSVIpD6guAr42jh2q4p1/PkGwysGd36kjuP1ZjDl/SmXdC/QcbyL1wb997FypuInbEUX11aB4KwEblzvX/zKsoStvhlTio4/Z6TCG6cA1xIpO07wQHZ1ObPPEkOMSQtjEd/+Uimv+jJ3r32HZzXBib2pYSz4IIUrDmE906mZNZuXtldTURjnRMo93N/hwqXEUI0Lbvk56mw8AEO02ObQ1ydLVWTpiz2LZTto2vgjmx1f/y23smUD1TUf1VKIqBqo6zKErhwePO/XhjKs+VjqCYbqHXNGZOCXJob1VQ4tJCHGO2XOU9Mm3OFP9ALO6fsCKWyt49/lwscMSQgzTmEx0FFeA6ssWcflqN9OmHuVUcwW/+EeD6In/2+/rdr0R4/PfrcMX2sfWdxrJtO266HHJqIXDYeKtrMSwK3E6cslQOmkNedaV6q3C44qR7P1ok6OVDucSnSFUdPzVXipCvTTvkcZJIUZCcu/PqPzUY2zddgVr7tjHkR1JWo9lih2WEGIYxkaio6g4Kqfhb5xD08IKps3oYELVITraK3n5ny3aD27K6zTJqMVzf9mRawa22y55XDxsYlkQqnXRG6vCYXQAudlSQ+3RUb1VuB0RotGPvmna6TCm7R3SrKupS6YQS7roPXFgaEEJIT7CNhLE9/wzytKvs++9P+Gqz1bwy7/pxJSVG4QYs0o+0alfdh0zV0ymoeoY1cE9ZDJOju+z2byhk+6WlkGfL50ceMzdMiERdxOqVohkK1Gzp4HckJZziENXqqcKtyN80aEr0xraDuaTL/PR2lIJtixwJsRIyZ7ZTLZpNUdc9zBN/SmXXx9k52uxYoclhBiikk90JlQdpUb9gBNbImw4GKf7jIE9Cv2B0V6FYEUWNVyBmt2GYbowsukhD10p3io8zlMkYx9NSux0BBP/oLeAUFSYMDHMxje8Q4pHCHFpid0/ofJTj7J1QxPX3dLCB7uThDtKYCMsIcSglfz08vdfP81L//sUu18P03V6dJIcgGiXSTCYQPFU4jDaMUwvpmEPuRlZ9VbjcSUuUtEJYxIcdEWnfkY1TofB6V0yrVyIkWaluknsf45w5QOc3G9w9ecqQdbWEWJMKvlEp1ginSmC3m4U1YHD6iZrejGNoc+6Ur0VeDzpc6sin2Wlw5hKcNA9OlMXN9IVnkym9+PrAAkhhi997FWsRAd7jn+aqglO5iyXtXWEGIsk0bmESFsMv7cLAKfdm6vomI4hNyOHahyoqk2k66NdjXY6Qjpbhb9ycCdumm3SfNw/tGCEEHmwie/8R+z6G9ixvoIVt4TwV8hbphBjjfzUXkK028DnjoAZxulIYZgeLMs55IpOZY1JKun42AJkVjpMPF1LqMaR97mCNS6qKiOc2CW7lQtRSGbkFMlDv6TV9S06z1isvrOy2CEJIQZJEp1LiHbnGg/96kmcTgPD9GAOI9EJVSQId13kdpsZYvEAThf4Qvn9c0xf3kQ4PoHeY4eGFIsQIn+pQ7/ESofZfvA26qe6ZHsIIcYYSXQuwcjYpFIe/I4zuD0KWcOFaQ8x0VFdVAR7CHdcfDGORARMg7yrOlPnezjTXAemLGQmRMHZJvHtf49ZfT3b1tey8rYQwar8K7BCiOKSRKcfsYgbv/MMLo+KkXVgWW4crsGfR/VWEfK109uWuujzVjpCLOqhonbgPh2PX6GuPszJfYkBjxVCjAwzeprk/udpc3+TthM2V3++QmZhCTFGSKLTj97T7XjT23B5FTIZFct2D6mio3orCXrb6TkTv+jzdiZCLB7Iq6IzY3kjyUw1be8fHHQcQoihSx19CTPWys4P7qR2kot5K2UygBBjgSQ6/eg4maFprhuPT8XIKFgMLdHx14RwOdOXHLqyUmHiicq8Ep2ZS0Kcap6KleoedBxCiOGwc0NYoZVsW9/I8luCg5pEIIQoDkl0+nF0ZwqXR6FhmotMGkzbM6SVkasbPWQNF4nIxbdqsNMR4um6AYeu/BUq9RMiHNt98cqQEKKwrEQ7ib3P0O77r5w5BtfeVYki76JClDT5Ee2HkbE5tCWBqipk0zYW3iGto1NZ5yAaDV36OpFTJJk54G+HMz/RSDQ5gY69ewYfhBBiRKSPv4bRdZjdp79CsNrB4huCxQ5JCNEPSXQGcGBTAsu0yaSsvkRn8BWdylqTcO+l96Qyug+RtKbh8au4fZc+/+ylXk6easJO9Q46BiHEyInv+AdM1zTee+9yrrg+QOMMd7FDEkJcgiQ6A4iHLV7+x27aTvuxFN+QEp2q6iS97Zd+3k6HiXZnsKxLTzFvmO6hoirF4c2RQV9fCDGy7EyU2LYfEQl9hX1bvVx7dyWefn5JEUIUjyQ6eWg/kcVIZ7AV/+ATHQUqK7rpOp3s97Bs5xESCT/VDRefv77g+kmc7lpI+PDmwV1fCFEQRuc+Ukde5Gj6d0hEYfXnZdVkIUqRJDp5srMJLPyD7tGpaAjidGTpOtnT73HZ7oO09sxl+hUfH+LyhVSmzk5xaKcHzPTgAhBCFEzywAsY8W62HvwCE2a4WbhappwLUWok0cmTbSSw1MFXdGqn1ZDMVJDs7Oj3OKPrEM3h65k02/2xjQOX3NxAODGZ01u3DjpuIUQB2SaxrX9H2rWIzZsWsHxNiAnTh7CqqBCiYCTRyZOdTWKpQVSHMqjppLWT/YSjtWCb/R5nxdvo7fYT7vYwc/GHe+nUTnYyZ4nCju3zsWKtQw1fCFEgdqqH2La/o9v3m+zbHuT6L1flvW+dEKLw5KcxT1aqF9tRBTCoqk71BIXe7kBex6aOvcqp3mu4bIUfj1/BF1RZfXcjJzuW0/zOy0OKWwhReEbnfpL7n+No+ncJd6pc/6UqWV9HiBIhP4p5spJdWHgABtWnU12boqc9v8QodfRlTrYsJGNVcOd36vns7zRguiay4w0FK9H/0JcQorhSR14k23mQ7SfuJ1TjZOVtl147SwgxeiTRyZOdjmAaNkDeqyO7fQp+f5KuljwbiK0s4Z3Ps/7Yn7L32HUcaPkMb762lPBeqeYIMRbEtv8f0lk/G3fcwpzlfi5b4Rv4RUKIgpJEJ2822XgUyH/oqqbRhWE6iZzpf8bV+bKt24m8+d85vD3Lvlf3Ed/+92BlhxSxEGKUmWli7/0VMccqNm9awKrbK6Q5WYgik0RnEIxEbkXivBOdpgDR5ESMWNugrmNGTpE69Asyp94ddIxCiOKykl3ENj9Bh+sr7NtZzQ2/Vk2wWjb/FKJYJNEZBCPWg23n36NT2xQgHG/ESnQWNjAhREkxug8T3/VPHMv+Pm2nPdz0m9WycrIQRTLgR7au6x7gb4FPAQ1AC/B3mqY9UeDYSo6Z7Ma0HHlXdKonODjZFQT74ruWCyHGr8ypd1D9deziD7jS/+fc+JVqXvlxN6ZR7MiEKC/5VHScQCtwM1AB3A38ka7rXypkYKXISnZiWU6ceTQjKypU1mTo6WePKyHE+JY6+AKpUzvYcuJ38AZcXHt3FYoUdoQYVQNWdDRNiwN/dt5DO3VdfxFYDfysUIGVIivRhWW786rohGoVHA6b7tOJUYhMCFGqErufQvV+l40H7uX6JT9m5e0h3vvPaLHDEqJsDHLnJtB13QlcA/xFf8eFQiGy2XE2W0hNYVpeAlVVhEL9JzCVDSrxZBVKKkIoJOtpFJLc39Ej93qIDjxFaum32fT+l7hm6b+hWC72vn3p90e5z6NjpO6zyyUz60rZoBMd4EkgDPy0v4Oi0ej4S3TiSSx7AabqIhrt/zeyqgn1hJNNxNsPYQ5wrBi6UCg04L+FGBlyr4dHefcxrNV/xPrtd7D6E/9JPJpmz9vxjx0n93l0jOR9lkSntA1q1pWu64+Tq+bcqmlapjAhlTDLwDQUnL6Bt3SobPQQTkzEjLWMQmBCiFJnGwmiG/+CnsRsNm67iSU3Bpl3pex2LkSh5Z3o6Lr+BLmG5E9pmla286VNg/wSnXqbcHdAFvsTQpxjZ6JENjxGV2oJm3Zcz4pbQ8xbJcmOEIWUV6Kj6/qTgAbcqGlaWW+6ZBoWTl//b0y+kIrXZ9LdKtPKhRAfZad6iL77CO2xFby345OsuC3E/Ksk2RGiUPJZR2ca8N+ANPCBrutnn3pH07RbCxhbSTLSGZy+/hvYaiY6yWTdRDt6RykqIcRYYqW6iax/BK5ey3s7HKy65TVUFfaul1maQoy0fKaXnwBk5Yc+RiqF09//0FVNo4tIvAEzKv05QoiLs1M9RNY/gn31WpN3fPwAABUMSURBVDbucHHVTS/j9Cgc21LsyIQYX2QLiEFKR+N4PFlUf/0lj6me6CGSmooZOTmKkQkhxho7HSa6/s9p757B+l2fZ+E1QZbc5JZFBYUYQZLoDFKkPUnA3Yqjctolj6mZ7CEcn4gZPT2KkQkhxiI7EyOy/vt0tIZ4d/dXmTzfxXVfrESVfUCFGBGS6AxSpMsg6GnHWTn9os87nFBRbRPucoElm9oIIfJgpoluepyuU1He3fct6qb6ufmrNbIRqBAjQBKdQQp3mvh8Sdy1ky/6fNUEJ6AQaUuPbmBCiP/X3p2HV13deRx/JyEsgQRICEsgLLKKgHuLOIrLd9RK3arTTrXWztPOVMVutn1spx2XTmuttnWqTu200027Oq3Taas+1YOK4IIsQoAA2SCQhCVk30lu7vxxfpFrSCAkuQm59/N6Hp/knvM7v9/J15D7ved3zu8MbeEQDRufpK5oB68XfIWklDRW3JHB2Aka2hHpCyU6J6mu0o/SjJs0psv69CnJ1DWMI1RbNpDdEpGYEKa96M9Urn+Gt/Z8lcraLFbcnsGU2cMHu2MiQ5YSnZMUaoWGmjBj0lpIGDH2mPqMrGRqm7MJ15cMQu9EJBYcKXmdmte/y+aSfyFv95n8/W3j9WBBkV5SotMLNeVHGJ1cyrDxc46py5yeQnXjLMKaiCwifdBWmU/t6vvJK7uUt7ev4LwPpLHshjSSerNDoUgcU6LTC7UVIVISdzMsY957ypOGwfiJUHE4DdqO3axPRORktDcdpnbNN9hXMII12+9k8pw0VtyeQVqG5u2I9JQSnV6oPdzGmBHlJGfMf095elYyYRKoLGsepJ6JSMxpa6Zh45McePsV1uR9lfrWbK5ZOYGZi0cOds9EhgQNgvZCbUWIMakN/lk6SSMg5FdYZU5LpqY+k5ZDeWjqoIj0p5biV6isLmLjeXcxq2E9F920msmzhrP++VpCepKFSLc0otMLtYfbGJkCyQn1DBs/+93yzOkpVDfPpa182yD2TkRiVaimmNrV95K/cyJrtt/J1NPH8sE7M8jI0mdWke4o0emFuqoQba1hxoQ3MCz96DydzOkjqaxM1xORRSRqwm1NNGx4grI3XmR17peoal7IitszOPPS0SToL7rIMfTPohfC7XBw9xEyx2wjecLpAIwcnciYsW2UF2sSsohE35GS16l86QHe2XoBb+38GPMvGMeKT2cwNlMTlUUiKdHppdL8FiZlljJswgKS0rKZccYIGprGUrV792B3TUTiRHtzJXVvPkzxG5t5dfs9NDKHa1ZOYPHy0dorSySgRKeXSvNbSJ8EiZVrGTXvemafP4mSinNoLc8d7K6JSJxp2bOKwy99k/Wbl7Op8BZOvzCda1ZOYOKM5MHumsigU6LTSzXlIRqqQ4xve560mbOZmNVM/tp8wi01g901EYlD7Y2HqHvzYQpefoOXN3+OiuZzuepTGSy7IU2bg0pc01T9PigtaGHW/DYaQk9RdXg4h7duGOwuiUicO1L6FhUHc9i08B8oqbmYJac9xQ13j+Kdl2rJ29BEuH2weygysDSi0wd565sYk57E3Pml5K87PNjdEREBINzWSGPOL9n3t5/yyrqb2LX/Ws6+IoNr75pA1hw95Uvii0Z0+uBwSSv/++hhEpOgPTTYvRERea9QdRF1a7/F9qL3s3fJSubPeJPLP/42+wtaWP9CLTXl+sMlsU8jOv1ASY6InMqOlK2j4sV72fRyOy9v/jyMXch1n83kwg+lMWaclmdJbNOIjohIPGhvpTn/r5QVv0bl3BVMWWwsmPEXbri7jLz1DeS82kBTnSbwSOxRoiMiEkfCR2pp2v5bdheO58C865i6+GoWzP8TN557mJ1vNbB9bQNN9Up4JHYo0RERiUPh5ioac35BYUEmZfOuJXtxBvMWP8/pFxwmb0MD29Y00FCthEeGPiU6IiJxrL2xnIbNPyVvVwZ751zNtCVTmTvvRW48v4yiLU1sfa1ek5ZlSFOiIyIitDdV0Lj1afLzxrJv9pVkLf4Ac2e8wvWfK6K0oJXctXWUFRwZ7G6KnDQlOiIi8q5wSw1Nuc9QlDeKkukXk7noE8yZsY3Lbt1EfXWI3LW1FG5uItQ62D0V6RklOiIicoxwWxMtRX+jpOhFDk4+m7T5H2H26VWcdeVqzr2ymby369n1diP11bqtJac2JToiInIcYVoPbKLiwCaq35lO7mxj5pJUTjvrNRZdvJ+yohB562rZu6NF20vIKUmJjoiI9Eiodi/17/yM7dtSyJ+2jMwzLuG0mcVceNN6lraFKFhfR96GRuoqNcojpw4lOiIiclLCrY207HaU7HbsHz+blFmXM3PJaGacuY7Fy0s4UAwFG2so3tZMa0t4sLsrcU6JjoiI9FqoqpC6qkK25owkb+pSMubfyKy5FZx79XqWXtvIvp2tFG6qozRft7ZkcPQo0XHOrQRuA5YAb5nZJdHslIiIDDFtzbQUv0pZ8ascWJvJiOylTF00nenT9rD85i2EWtsp2tLE7s31lJe0ggZ6ZID0dERnP/AQcD5wQfS6IyIiQ117YzlNu/5CwS7YPW4WKTMuYvriNLLn72TB+/JpakygeGsje7bWc2ivkh6Jrh4lOmb2LIBzbnp0uyMiIrEkVL2buurdbN+SwK70uYyecRHTF41h6oJC5r8vj5bmBIq3NbEnp45Dxa2ElfRIP4vaHJ3U1FRaW+P7iVKpqamD3YW4oDgPHMV6YMRsnFv3016wnz0FCRSnzSI561KyFowma24+V5yXR2tLImWFIQ7sauTQnhChtuh2p7/inJyc3C/nkeiIWqJTV1cX14lOamoqdXV1g92NmKc4DxzFemDETZzrtkDpFirWJ5A7/jRSspeSvXAMU7MOcN6CHSQmtHGgOIG9W6so2dVMY23/zmTuzzgr0Tm1adWViIgMovC7K7dyc2BnSibDp5xF1ulTyJrZwJIrd7Ds+koqDiWzL7eekh31VJTqFpf0nBIdERE5ZbQ3ltNc+BJFhVA0bCTJmYtIn3MW2fMSmXZOIUsu3kNraxL790BpbhWl+U001mjdunSvp8vLhwXHDgMSnXMjgXYz01a2IiISHW3NtO7fwMH9Gzi4JoGksdMZlXUmWQvSmTKtgTOvyufCGyqpqRpOWUELJblVHNzdSlurhnvkqJ6O6HwduC/idROwGrikvzskIiJyrDChmmLqa4rJ2wF5SSNIzpjPuFnLyJo7gsmzy5lzdh5Jia1UHBrB/sJG9u+qpnyvEp9419Pl5fcD90ezIyIiIj0WaqH1UA7lh3IoXwc5I8czPHM+mXOymDwzkUlnlLNwaRGJCW1KfOKc5uiIiMiQF26uomXfW5TsgxIgYeR4hk9cQObsKUyemcSkMw5FJD4jKdzYxs434mB1myjRERGR2BNurqJl75uU7O2c+ExmysxEQik1wL7B7qYMACU6IiIS8zonPjH7UEY5RuJgd0BEREQkWpToiIiISMxSoiMiIiIxS4mOiIiIxCwlOiIiIhKzlOiIiIhIzFKiIyIiIjEras/RSU5Ojtaph4Tk5OS4j8FAUJwHjmI9MBTngdGfcdb/r1NbNBKdNIBbbrklCqcWERE5ZaUBNYPdCXmvaCQ6JcB0oDYK5xYRETkVpeHf/+QUkxAOaxdXERERiU2ajCwiIiIxS4mOiIiIxCwlOiIiIhKzlOiIiIhIzIrac3RinXNuFLAVmGBm44KyYcD3gFvxSeQfgJVm1tKTenkv59w1wAPAPKAO+L6ZPaI49x/nXBbwOLAcSADW4mNVojj3nnNuJXAbsAR4y8wuiagbA/wIuBZoAX4KfNXMwv1RH0+6i7NzbiLwKHAxMA4oBh40s99EtFWc44RGdHrvGxy7lPBf8W8Yi4C5wBnAt0+iXgLOuavwf2S+jP9DNR94IahWnPvPD4FkYBaQDTQAPwnqFOfe2w88hH+z7ewxIBOYAbwPuAn4TD/Wx5Pu4jwG2Awswy/7/izwY+fcBRHHKM5xQolOLzjnzgGu5tg/6p8CvmlmZWZWDtwP/JNzLrGH9XLUv+NjtcrM2sys1sy2BXWKc/85Dfi9mdWZWSPwa2BxUKc495KZPWtmzwIHI8udcynAzcDXzKzKzHYDjwCf7I/6eNNdnM2syMweMbN9ZhY2s5eBt4ELQHGON7p1dZKC4fqfACs7lY/DfyJ+J6J4E340Its5V3O8evzQqgDOudHAucDvnHO5QAbwBvA5/IMoFef+833gw86554AQ/jbUc/p9jpp5wHD8aEOHTcAZzrmkvtabWSianR+qnHNjgbOBB4MixTmOxP0nr174IpBjZq92Kk8NvkY+/rs6ou5E9XLUePx8kdvwI2ezgEPAH1Gc+9vrQDpQiY/TPOArKM7Rkgo0mllbRFk1kASM6od66ST4cPo08JqZuaBYcY4jSnROgnNuNn4k50tdVNcFX8dGlI2LqDtRvRzVEY/HzGxPcEvla8B5+FEHUJz7LLjF9BLwJn5OQyrg8HOh9PscHXVASvDm22Ec/ve6qR/qJUIQp18Bo4F/jKhSnOOIEp2TcxF+ctp259wB4FkgLfh+IbAPOCvi+LPxnwL2mVn18eoHoO9DhpnV4G99RK5uiPxece4f6fiJlo+ZWWOQUD4OvB9/W1tx7n95wBHgzIiys4Hc4HZIX+slECQpvwUmAteYWWSCojjHEe11dRKCJeWRn2CXAT/HrwiqxA/5Xw98EGgF/g+/5PHuoP29x6uXo5xzX8FPBlwBlOPnkpxvZuefKI6Kc8855/Lxy8IfCIq+AXzUzLIV594L3mSHAXfhlydfAbSb2RHn3M+AKcBH8aMELwJPmNljQds+1ceT7uKM/2D0O/z8vquDJL5zW8U5Tmgy8kkIPhG8+6nAOVcJhM3sQPD6QWACsB0/WvY/+CW4HU5UL0c9jJ+rswkfq7XAjUGd4tx/rsMvzS3Fz4vajH/DAMW5L74O3BfxuglYDVyCn1T/JLAXP2rw3/iRtA59rY8n3cX5PuBDQDNwyLmOqTn8ysxuD75XnOOERnREREQkZmmOjoiIiMQsJToiIiISs5ToiIiISMxSoiMiIiIxS4mOiIiIxCwlOiIiIhKz9BwdkUHgnLsEeAXINrOSQe4OAM65+4GPmdmcXrQdA+wCrjez9f3dt07XSgXygSvNbEs0ryUiQ58SHYk5zrlPAj8C0s2sLqI8Bzi9m/J3zOy2Ae/sIHDOTcNv03BpF5vT9tY9wIZoJzkAZlbnnPs+8D3Aon09ERnadOtKYpHDJ/HL3y1wbgJwBrC/i/JFwKoB7mPMcM6NBO4A/msAL/sLYLlzbtEAXlNEhiCN6EjMMbNi51whcDnw16D4MmAb8FoX5QkEiY5zbhZ+pGApfn+bQuBhM3s6qP9n4LvA5MhNAp1z9wCfxd+KanfOzQG+E1wrDKwHvmhmW7vr94naOOc+gX8M/XL8o+gX4LdfuN3MNkacx/DbOszFb074GeBV4FYz+xVHN918JXg0frGZzYxof13Qj2zgbeBTZlbYXb+Bq4BR+L2AOs4xE9gNfAS4NfiZDgD3dcQyOC4cxO3v8HtmVQB343dV/yF+O4py4Mtm9seOdmZ2yDn3BvAx/B5zIiJd0oiOxKpV+DfXDpcBLwf/dS7faWalwesxQdurgMXAj4GfO+cuDeqfAYbjN7OMdCt+H51259wk/N5ch/A73i/Fz1951TmX2VVnT6JNIvBt/D485wBVwDPB5oY456YCfwbWBfVfwG+IGumc4OuN+E0Lz4+om4IfnbkFv2ntOOBnXfU5wnL8rb+2LuoeAp4GluBj93Pn3NxOx3wNeB6/U/RfgafwGzK+hN8x+jngKedcRqd264BLERE5DiU6EqtWAYuccxOD15fhJ/+uBhZ2Kn93xz8z22pm/2lmOWZWaGaP499obw7qa/C7dH+8o41z7hz8bbGngqI7gD1mdkdwvl34UYtqfALRlZ62SQA+b2ZrzGwncC9wGjA7qL8Tnyx92sxyzWwVPpGIVB58rTSzA2ZWHlE3Aj/yszGY6Psd4KLg9lR3ZuE3Be3KE2b2jJkV4DdgbMbHPNLvzOyXwTH34UeHCszsF0HZvUAKcEGndiXBzy4i0i3dupJY9XLw9XLn3Br8G+JqM6sJJh93lM8FvtzRyDmXgn9jvQY/ujEc/+b/SsS5nwL+7JybHOxcfyuw0cy2B/XnA+c65+o79WlUcL2u9LRNGIhcadSRYEzCjwAtBNabWSjimDe7uWZXyjolPh27mk/E7+LclVFATTd1mzu+MbM259zBoK+RtkQcU+6cCwE5EWVVzrkjQR8iNQfXFhHplhIdiUlmdtg5twV/m2o4sCkYjQGftHSUh/DzVzo8AlwHfBHYCTTg5+yMjTjmb/hRkVuccz8APgo8GFGfiB9RuquLrnWXEPS0TXunJCYc0b5zWXevj+dIN22PN/pbDqSfxPk6n6u1i3ady7pql87R0SkRkS4p0ZFYtgo/DyWZoyM84BOdx4PyDREJEMDFwK/N7PcAzrlEYB5wsOMAMws5536Dv321A/+G+9uIc2wAPgGURk5YPoHetOlKLnCzcy4pIiHqfMunI/lI6sN1Im2i6wQt2hbj4yYi0i0lOhLLVuFHZjKAmyLKX8OvKLoBn/BE2gVc55z7I1CPXwGURUSiE/hlUPct4IVOt3ueAD4J/Mk59038KqdpwAeA58zsjS762ps2XfkhfgLyk865R4HJQR/h6OjM4eBnu8I5tx1oMbOqHp6/Ky8A33POZZvZvhMe3Q+ccwn4pPTfBuJ6IjJ0aTKyxLLX8LdARuJXNAFgZrXARiCViInIgS8AxfhRn1X4OSp/6HxiM8vBzz85i6OTkDvqDuJHUQ4Dz+KTp18DM/DP8TlGb9p0c55S/JLsZUH/foCfBAx+Tgtm1g6sBD6MT6je6en5u7nmDoLl6305z0m6BL9C7pkBvKaIDEEJ4fDJ3L4XkaHGOXcxfrXZkuM9x6eP17gIvyR8rpk1RuMana73PH5y+XeifS0RGdp060okxjjn7sCvZCrDr8J6FFgXrSQHwMzWOOcewC81336i4/si2OvqTeA/onkdEYkNGtERiTHOuYfwz/2ZhH8a8UvAPWZWMagdExEZBEp0REREJGZpMrKIiIjELCU6IiIiErOU6IiIiEjMUqIjIiIiMUuJjoiIiMQsJToiIiISs/4fzzakT8XHifYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "dark" }, "output_type": "display_data" } ], "source": [ "# make a function that will return the x and m matrices of \n", "# any given multilayered spherical particle\n", "# these can then be passed on to scattnlay\n", "def make_xm(sizes, mats, lams):\n", " x = np.ones((len(lams), len(sizes)), dtype = np.float64)\n", " m = x - x + 0 + 0*1j\n", " sizes = np.cumsum(sizes)\n", " for s, size in enumerate(sizes):\n", " x[:,s] = np.pi*size/lams\n", " m[:,s] = get_nk(matsdict[mats[s]], lams)\n", " theta = np.linspace(0.0, 180, num_pts, dtype = np.float64)*np.pi/180.0\n", " return x, m, theta\n", "\n", "fig1 = plt.figure(figsize=(8,4))\n", "\n", "\n", "# mutilayered \n", "size_min = 30\n", "size_max = 70\n", "\n", "size = [70, 70, 70, 70, 30, 30, 30, 30] # each layer thickness\n", "size2 = [57.67433 , 73.21121 , 61.4017 , 47.315903, 30.155327, 55.705273,\n", " 38.71086 , 34.46334 ]\n", "\n", "#size = np.array(np.random.randint(size_min,size_max,8))\n", "print(size)\n", "mats = [3, 4, 3, 4, 3, 4, 3, 4] # 2 - silicon, silicon.dat, 1 - gold, gold.dat \n", " # 3 - silica, silica.dat, 4 - titania, tio2.dat \n", "num_pts = 250\n", "lam_min = 300\n", "lam_max = 1200\n", "lams = np.linspace(lam_min, lam_max, num_pts) \n", "theta = np.linspace(0.0, 180, num_pts, dtype = np.float64)*np.pi/180.0\n", "\n", "kr, m, theta = make_xm(size, mats, lams)\n", "kr2, m, theta = make_xm(size2, mats, lams)\n", "terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m)\n", "terms, Qext2, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr2, m)\n", "\n", "\n", "ax = fig1.add_subplot(1,1,1)\n", "ax.set_title('silica coated gold')\n", "ax.set_xlabel('Wavelength (nm)')\n", "#plt.plot(lams, Qsca, label='Sca')\n", "#plt.plot(lams, Qabs, label='Abs')\n", "plt.plot(lams, Qext, label='Ext')\n", "plt.plot(lams, Qext2, label='Ext2')\n", "plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", "np.savetxt('qestsave.txt', Qext)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "\n", "# Now we need to create a dataset and save it to disk\n", "import h5py\n", "dataset_size = 5\n", "\n", "# parameters of the dataset\n", "num_layers = 8\n", "num_lpoints = 250\n", "lam_min = 300\n", "lam_max = 1200\n", "size_min = 30\n", "size_max = 70\n", "\n", "mats = [3, 4, 3, 4, 3, 4, 3, 4] # 2 - silicon, silicon.dat, 1 - gold, gold.dat \n", " # 3 - silica, silica.dat, 4 - titania, tio2.dat \n", "#generate a huge array and then reshape\n", "dataset_X = np.random.randint(size_min,size_max,num_layers*dataset_size).astype(float).reshape(dataset_size, num_layers)\n", "lams = np.linspace(lam_min, lam_max, num_lpoints) \n", "dataset_Y = np.zeros((dataset_size,num_lpoints))\n", "\n", "for ind in np.arange(dataset_size):\n", " kr, m, theta = make_xm(dataset_X[ind,:], mats, lams)\n", " terms, dataset_Y[ind,:], Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(kr, m)\n", " \n", "\n", "h5f = h5py.File('scatter8.h5', 'w')\n", "h5f.create_dataset('sizes', data=dataset_X)\n", "h5f.create_dataset('spectrum', data=dataset_Y)\n", "h5f.close()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ideas to improve dataset\n", "1) network in reverse. \n", "\n", "1) encode angular dependence\n", "2) higher resolution?\n", "3) Mixture of materials, silicon, silver, gold added. \n", "\n", "#idea to improve network \n", "1) Dropout /batch norm\n", "2) \n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 2 }