{ "cells": [ { "cell_type": "code", "execution_count": 91, "metadata": { "ExecuteTime": { "end_time": "2018-10-05T12:20:08.818657Z", "start_time": "2018-10-05T12:20:08.561719Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The autoreload extension is already loaded. To reload it, use:\n", " %reload_ext autoreload\n", "Dataset has been loaded\n" ] } ], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import h5py\n", "from sklearn.model_selection import train_test_split\n", "#import jtplot submodule from jupyterthemes\n", "from jupyterthemes import jtplot\n", "#currently installed theme will be used to\n", "#set plot style if no arguments provided\n", "jtplot.style()\n", "\n", "#now load this dataset \n", "h5f = h5py.File('./datasets/s8_sio2tio2_v2.h5','r')\n", "X = h5f['sizes'][:]\n", "Y = h5f['spectrum'][:]\n", "\n", "#create a train - test split of the dataset\n", "x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=42)\n", "# normalize inputs \n", "#x_test = (x_test - 50)/20 \n", "\n", "print(\"Dataset has been loaded\")\n", "\n", "import numpy as np\n", "import mxnet as mx\n", "\n", "# Step1: Load the model in MXNet\n", "\n", "# Use the same prefix and epoch parameters we used in save_mxnet_model API.\n", "sym, arg_params, aux_params = mx.model.load_checkpoint(prefix='my_mod_bet', epoch=0)\n", "\n", "# We use the data_names and data_shapes returned by save_mxnet_model API.\n", "mod = mx.mod.Module(symbol=sym, \n", " data_names=['/input_21'], \n", " context=mx.gpu(), \n", " label_names=None)\n", "mod.bind(for_training=False, \n", " data_shapes=[('/input_21', (1,8))], \n", " label_shapes=mod._label_shapes)\n", "mod.set_params(arg_params, aux_params, allow_missing=True) \n", "\n" ] }, { "cell_type": "code", "execution_count": 192, "metadata": { "ExecuteTime": { "end_time": "2018-10-05T13:31:25.375799Z", "start_time": "2018-10-05T13:31:25.342858Z" } }, "outputs": [], "source": [ "import numpy as np\n", "\n", "def de(fobj, bounds, mut=0.8, crossp=0.7, popsize=20, its=1000):\n", " dimensions = len(bounds)\n", " pop = np.random.rand(popsize, dimensions)\n", " min_b, max_b = np.asarray(bounds).T\n", " diff = np.fabs(min_b - max_b)\n", " pop_denorm = min_b + pop * diff\n", " fitness = np.asarray([fobj(ind) for ind in pop_denorm])\n", " best_idx = np.argmin(fitness)\n", " best = pop_denorm[best_idx]\n", " for i in range(its):\n", " #trialarr = np.zeros(popsize)\n", " for j in range(popsize):\n", " idxs = [idx for idx in range(popsize) if idx != j]\n", " a, b, c = pop[np.random.choice(idxs, 3, replace = False)]\n", " #mutant = np.clip(a + mut * (b - c), 0, 1)\n", " mutant = np.clip(pop[best_idx] + mut * (b - c), 0, 1)\n", " cross_points = np.random.rand(dimensions) < crossp\n", " if not np.any(cross_points):\n", " cross_points[np.random.randint(0, dimensions)] = True\n", " trial = np.where(cross_points, mutant, pop[j])\n", " #trialarr[j] = np.where(cross_points, mutant, pop[j])\n", " trial_denorm = min_b + trial * diff\n", " f = fobj(trial_denorm)\n", " if f < fitness[j]:\n", " fitness[j] = f\n", " pop[j] = trial\n", " if f < fitness[best_idx]:\n", " best_idx = j\n", " best = trial_denorm\n", " if i%25 == 0:\n", " print(i, fitness[best_idx])\n", " return best, fitness[best_idx]\n", "\n", "\n", "def de2(fobj, bounds, mut=0.8, crossp=0.7, popsize=20, its=1000):\n", " dimensions = len(bounds)\n", " pop = np.random.rand(popsize, dimensions)\n", " min_b, max_b = np.asarray(bounds).T\n", " diff = np.fabs(min_b - max_b)\n", " pop_denorm = min_b + pop * diff\n", " fitness = np.asarray(fobj(pop_denorm))\n", " best_idx = np.argmin(fitness)\n", " best = pop_denorm[best_idx]\n", " for i in range(its):\n", " trialarr = np.zeros((popsize, dimensions))\n", " for j in range(popsize):\n", " idxs = [idx for idx in range(popsize) if idx != j]\n", " a, b, c = pop[np.random.choice(idxs, 3, replace = False)]\n", " #mutant = np.clip(a + mut * (b - c), 0, 1)\n", " mutant = np.clip(pop[best_idx] + mut * (b - c), 0, 1)\n", " cross_points = np.random.rand(dimensions) < crossp\n", " if not np.any(cross_points):\n", " cross_points[np.random.randint(0, dimensions)] = True\n", " trialarr[j] = np.where(cross_points, mutant, pop[j])\n", " \n", " \n", " trial_denorm = min_b + trialarr * diff\n", " #print(trial_denorm)\n", " f = fobj(trial_denorm)\n", " for j in range(popsize):\n", " if f[j] < fitness[j]:\n", " fitness[j] = f[j]\n", " pop[j] = trialarr[j]\n", " if f[j] < fitness[best_idx]:\n", " best_idx = j\n", " best = trial_denorm[j]\n", " if i%25 == 0:\n", " print(i, fitness[best_idx])\n", " return best, fitness[best_idx]\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "start_time": "2018-10-05T13:30:27.166Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 1.9676681607961655\n", "25 0.7767577655613422\n", "50 0.7767577655613422\n", "75 0.7767577655613422\n", "100 0.7324242033064365\n" ] } ], "source": [ "\n", "import numpy as np\n", "from scipy.optimize import rosen, differential_evolution\n", "import scnets as scn\n", "import mxnet as mx\n", "from mxnet import nd\n", "import snlay as snlay\n", "\n", "mats = np.array([3, 4, 3, 4, 3, 4, 3, 4])\n", "lams = np.linspace(300, 1200, 256)\n", "targ_spec = y_test[29]\n", "targ_spec2 = np.tile(targ_spec, (80,1))\n", "\n", "# def loss_jumper(x, it_cnt=0):\n", "\n", "def mxmod_arr_loss(x):\n", " x_np = np.array(x)\n", " x_np = (x_np - 50.0)/20.0\n", " res2 = mod.predict(x_np)\n", " y_t = nd.array(targ_spec2, ctx=mx.gpu())\n", " err = nd.abs(y_t - res2)/y_t\n", " err2 = 100*nd.mean(err, axis=1).asnumpy()\n", " return err2\n", "\n", "def mxmod_loss(x):\n", " x_np = np.array(x)\n", " x_np = (x_np - 50.0)/20.0\n", " x_np = np.expand_dims(x_np, axis=0)\n", " res2 = mod.predict(x_np)\n", " y_t = nd.array(targ_spec, ctx=mx.gpu())\n", " err = nd.abs(y_t - res2)/y_t\n", " err2 = 100*nd.mean(err).asscalar()\n", " return err2\n", "\n", "# res2 = mod.predict(x)\n", "\n", "# \n", "# #ez2 = err2.copyto(mx.cpu())\n", "# return err2\n", "\n", "def loss_func(x):\n", " #x_np = np.array(x)\n", " #count+=1\n", " spec_ac = snlay.calc_spectrum(x, mats, lams)\n", " diff = np.abs(targ_spec - spec_ac)/targ_spec\n", " return 100*np.mean(diff)\n", "\n", "\n", "\n", "\n", "# x_t = np.array([40, 45, 40, 45, 40, 45, 40, 50])\n", "# sd = mxmod_loss(x_t)\n", "# sd2 = loss_func(x_t)\n", "# print(sd, sd2)\n", "bnds = [(30, 70)]*8\n", "#b, c = de(fobj=loss_func, bounds=bnds, popsize=80, its=2500)\n", "b, c = de(fobj=mxmod_loss, bounds=bnds, popsize=80, its=2500)\n", "#b, c = de2(fobj=mxmod_arr_loss, bounds=bnds, popsize=80, its=2500) \n", "#it = list(de(lambda x: x**2, bounds=[(-100, 100)]))" ] }, { "cell_type": "code", "execution_count": 121, "metadata": { "ExecuteTime": { "end_time": "2018-10-05T13:09:02.641621Z", "start_time": "2018-10-05T13:09:02.616461Z" } }, "outputs": [ { "data": { "text/plain": [ "(80, 256)" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "targ_spec.shape" ] }, { "cell_type": "code", "execution_count": 105, "metadata": { "ExecuteTime": { "end_time": "2018-10-05T12:35:59.739963Z", "start_time": "2018-10-05T12:35:59.714914Z" } }, "outputs": [ { "data": { "text/plain": [ "array([30., 64., 52., 36., 36., 64., 35., 62.])" ] }, "execution_count": 105, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x_test[29]\n" ] }, { "cell_type": "code", "execution_count": 114, "metadata": { "ExecuteTime": { "end_time": "2018-10-05T13:04:11.358640Z", "start_time": "2018-10-05T13:04:11.334873Z" } }, "outputs": [], "source": [ "a = np.array([0, 1, 2])\n", "b = np.tile(a, (3,1))" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "ExecuteTime": { "end_time": "2018-10-05T13:04:13.495202Z", "start_time": "2018-10-05T13:04:13.469641Z" } }, "outputs": [ { "data": { "text/plain": [ "(3, 3)" ] }, "execution_count": 115, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.4" } }, "nbformat": 4, "nbformat_minor": 2 }