{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# we will study the hyperparamter tuning of fully connected scatternet\n", "\n", "# first find optimal number of layers and neuron numbers\n", "# second optimize the batch size and number of epochs for the best learned architecture\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Loading the dataset here" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2018-09-04T16:14:58.074796Z", "start_time": "2018-09-04T16:14:57.660525Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/hegder/anaconda3/envs/deep/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", " return f(*args, **kwds)\n", "/home/hegder/anaconda3/envs/deep/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", " return f(*args, **kwds)\n", "/home/hegder/anaconda3/envs/deep/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88\n", " return f(*args, **kwds)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Dataset has been loaded\n", "x-train (44999, 8)\n", "x-test (55001, 8)\n", "y-train (44999, 256)\n", "y-test (55001, 256)\n" ] } ], "source": [ "import numpy as np\n", "\n", "import h5py\n", "from sklearn.model_selection import train_test_split\n", "\n", "#now load this dataset \n", "h5f = h5py.File('./datasets/s8_sio2tio2_v2.h5','r')\n", "X = h5f['sizes'][:]\n", "Y = h5f['spectrum'][:]\n", "\n", "#get the ranges of the loaded data\n", "num_layers = X.shape[1]\n", "num_lpoints = Y.shape[1]\n", "size_max = np.amax(X)\n", "size_min = np.amin(X)\n", "size_av = 0.5*(size_max + size_min)\n", "\n", "#this information is not given in the dataset\n", "lam_min = 300\n", "lam_max = 1200\n", "lams = np.linspace(lam_min, lam_max, num_lpoints)\n", "\n", "#create a train - test split of the dataset\n", "x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.55, random_state=42)\n", "\n", "# normalize inputs \n", "x_train = (x_train - 50)/20 \n", "x_test = (x_test - 50)/20 \n", "\n", "print(\"Dataset has been loaded\")\n", "print(\"x-train\", x_train.shape)\n", "print(\"x-test \", x_test.shape)\n", "print(\"y-train\", y_train.shape)\n", "print(\"y-test \", y_test.shape)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### create models here" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "ExecuteTime": { "end_time": "2018-09-06T07:21:58.310439Z", "start_time": "2018-09-06T07:21:57.952080Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "first (Dense) (None, 256) 2304 \n", "_________________________________________________________________\n", "Reshape1 (Reshape) (None, 4, 64) 0 \n", "_________________________________________________________________\n", "Up1 (UpSampling1D) (None, 8, 64) 0 \n", "_________________________________________________________________\n", "Conv1 (Conv1D) (None, 8, 64) 28736 \n", "_________________________________________________________________\n", "Conv2 (Conv1D) (None, 8, 32) 14368 \n", "_________________________________________________________________\n", "Conv3 (Conv1D) (None, 8, 32) 7200 \n", "_________________________________________________________________\n", "Conv4 (Conv1D) (None, 8, 32) 7200 \n", "_________________________________________________________________\n", "Conv5 (Conv1D) (None, 8, 32) 7200 \n", "_________________________________________________________________\n", "Conv6 (Conv1D) (None, 8, 32) 7200 \n", "_________________________________________________________________\n", "flatten_105 (Flatten) (None, 256) 0 \n", "=================================================================\n", "Total params: 74,208\n", "Trainable params: 74,208\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "import scnets as scn\n", "from IPython.display import SVG\n", "from keras.utils.vis_utils import model_to_dot\n", "\n", "#define and visualize the model here\n", "#model = scn.fullycon(num_layers, num_lpoints, 4, 500, 2)\n", "\n", "model = scn.conv1dmodel(in_size=8, \n", " out_size=256,\n", " c1_nf=64,\n", " clayers=5,\n", " ker_size=7)\n", "model.summary()\n", "#SVG(model_to_dot(model).create(prog='dot', format='svg'))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-09-04T08:53:28.967090Z", "start_time": "2018-09-04T08:42:58.990636Z" } }, "outputs": [], "source": [ "x_t, x_v, y_t, y_v = train_test_split(x_train, y_train, test_size=0.2, random_state=42)\n", "history = model.fit(x_t, y_t,\n", " batch_size=32,\n", " epochs=250, \n", " verbose=1,\n", " validation_data=(x_v, y_v))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-09-04T09:13:20.325358Z", "start_time": "2018-09-04T09:13:20.044281Z" } }, "outputs": [], "source": [ "scn.plot_training_history(history, 64*2.56)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "ExecuteTime": { "start_time": "2018-09-05T05:27:49.316Z" }, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting 3 folds for each of 18 candidates, totalling 54 fits\n" ] } ], "source": [ "\n", "\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "from sklearn.metrics import fbeta_score, make_scorer\n", "\n", "def my_custom_score_func(ground_truth, predictions):\n", " diff = np.abs(ground_truth - predictions)/np.abs(ground_truth)\n", " return -100*np.mean(diff)\n", "\n", "\n", "\n", "from sklearn.model_selection import GridSearchCV\n", "from keras.models import Sequential\n", "from keras.layers import Dense\n", "from keras.wrappers.scikit_learn import KerasRegressor\n", "import scnets as scn\n", "#model = KerasClassifier(build_fn=scn.fullycon, in_size=8, out_size=250, N_gpus=1, epochs=500, verbose=0)\n", "\n", "model = KerasRegressor(build_fn=scn.conv1dmodel, \n", " in_size=8, \n", " out_size=256, \n", " c1_nf=64,\n", " clayers=3,\n", " ker_size=3,\n", " epochs=250, \n", " verbose=0)\n", "my_score = make_scorer(my_custom_score_func, greater_is_better=False)\n", "\n", "\n", "\n", "param_grid = dict(ker_size=[3, 5, 7],\n", " clayers=[3,4,5],\n", " batch_size=[32,64]) \n", "grid = GridSearchCV(estimator=model, \n", " param_grid=param_grid, \n", " n_jobs=1, \n", " scoring=my_score,\n", " verbose=1)\n", "grid_result = grid.fit(x_train, y_train)\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "ExecuteTime": { "end_time": "2018-09-06T11:13:09.815660Z", "start_time": "2018-09-06T11:13:09.803034Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.61959961 0.65246116 0.66099284 0.6769027 0.67712374 0.69844051\n", " 0.70291055 0.70903711 0.7103426 0.71306676 0.7421975 0.74365013\n", " 0.80096641 0.83683735 0.83717051 0.87958107 0.90866163 0.93305465]\n" ] }, { "data": { "text/plain": [ "[{'batch_size': 32, 'clayers': 5, 'ker_size': 7},\n", " {'batch_size': 32, 'clayers': 3, 'ker_size': 7},\n", " {'batch_size': 32, 'clayers': 4, 'ker_size': 7},\n", " {'batch_size': 32, 'clayers': 3, 'ker_size': 5},\n", " {'batch_size': 64, 'clayers': 5, 'ker_size': 5},\n", " {'batch_size': 64, 'clayers': 3, 'ker_size': 7},\n", " {'batch_size': 32, 'clayers': 4, 'ker_size': 5},\n", " {'batch_size': 64, 'clayers': 4, 'ker_size': 7},\n", " {'batch_size': 64, 'clayers': 5, 'ker_size': 7},\n", " {'batch_size': 64, 'clayers': 3, 'ker_size': 5},\n", " {'batch_size': 32, 'clayers': 5, 'ker_size': 5},\n", " {'batch_size': 64, 'clayers': 4, 'ker_size': 5},\n", " {'batch_size': 64, 'clayers': 4, 'ker_size': 3},\n", " {'batch_size': 64, 'clayers': 5, 'ker_size': 3},\n", " {'batch_size': 32, 'clayers': 3, 'ker_size': 3},\n", " {'batch_size': 64, 'clayers': 3, 'ker_size': 3},\n", " {'batch_size': 32, 'clayers': 4, 'ker_size': 3},\n", " {'batch_size': 32, 'clayers': 5, 'ker_size': 3}]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bestidx = np.argsort(grid_result.cv_results_['mean_test_score'])\n", "print(grid_result.cv_results_['mean_test_score'][bestidx])\n", "parlist = grid_result.cv_results_['params']\n", "runtlist = grid_result.cv_results_['mean_fit_time']\n", "bestlist = [parlist[indx] for indx in bestidx]\n", "runlist = [runtlist[indx]/60.0 for indx in bestidx]\n", "bestlist" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.6" } }, "nbformat": 4, "nbformat_minor": 2 }