{ "cells": [ { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T05:53:10.003222Z", "start_time": "2018-09-11T05:53:09.983926Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/hegder/anaconda3/envs/deep/lib/python3.6/site-packages/ipyparallel/client/client.py:459: RuntimeWarning: \n", " Controller appears to be listening on localhost, but not on this machine.\n", " If this is true, you should specify Client(...,sshserver='you@Gamma')\n", " or instruct your controller to listen on an external IP.\n", " RuntimeWarning)\n" ] }, { "data": { "text/plain": [ "[0, 1, 2, 3, 4, 5, 6, 7]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import ipyparallel as ipp\n", "rc = ipp.Client()\n", "rc.ids" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T05:59:18.853907Z", "start_time": "2018-09-11T05:59:18.560633Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[stdout:0] Dataset has been loaded\n", "[stdout:1] Dataset has been loaded\n", "[stdout:2] Dataset has been loaded\n", "[stdout:3] Dataset has been loaded\n", "[stdout:4] Dataset has been loaded\n", "[stdout:5] Dataset has been loaded\n", "[stdout:6] Dataset has been loaded\n", "[stdout:7] Dataset has been loaded\n" ] } ], "source": [ "%%px\n", "\n", "import numpy as np\n", "\n", "import h5py\n", "from sklearn.model_selection import train_test_split\n", "\n", "#now load this dataset \n", "h5f = h5py.File('./datasets/s8_sio2tio2_v2.h5','r')\n", "X = h5f['sizes'][:]\n", "Y = h5f['spectrum'][:]\n", "\n", "#get the ranges of the loaded data\n", "num_layers = X.shape[1]\n", "num_lpoints = Y.shape[1]\n", "size_max = np.amax(X)\n", "size_min = np.amin(X)\n", "size_av = 0.5*(size_max + size_min)\n", "\n", "#this information is not given in the dataset\n", "lam_min = 300\n", "lam_max = 1200\n", "lams = np.linspace(lam_min, lam_max, num_lpoints)\n", "\n", "#create a train - test split of the dataset\n", "x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.55, random_state=42)\n", "\n", "# normalize inputs \n", "x_train = (x_train - 50)/20 \n", "x_test = (x_test - 50)/20 \n", "\n", "print(\"Dataset has been loaded\")\n", "# print(\"x-train\", x_train.shape)\n", "# print(\"x-test \", x_test.shape)\n", "# print(\"y-train\", y_train.shape)\n", "# print(\"y-test \", y_test.shape)\n", "\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "import hyptune as htun\n", "import scnets as scn" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T06:09:41.335279Z", "start_time": "2018-09-11T06:09:41.326581Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%px --target 0 --noblock\n", "import os\n", "os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\" \n", "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0\"\n", "func = scn.resnet\n", "param_grid = dict(num_units=[2], \n", " red_dim=[8,16],\n", " batch_size=[32, 64],\n", " ker_size=[3, 5, 7])\n", " \n", "cvresults = htun.get_cv_grid(modelfunc=func, \n", " param_grid=param_grid,\n", " num_epochs=250,\n", " x_train=x_train,\n", " y_train=y_train)\n", "\n", "htres = htun.print_tuning_results(cvresults, func)\n", "htres.to_csv('n2_cvsrch.dat')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T06:11:05.592120Z", "start_time": "2018-09-11T06:11:05.583939Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%px --target 1 --noblock\n", "import os\n", "os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\" \n", "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"1\"\n", "func = scn.resnet\n", "param_grid = dict(num_units=[3], \n", " red_dim=[8,16],\n", " batch_size=[32, 64],\n", " ker_size=[3, 5, 7])\n", " \n", "cvresults = htun.get_cv_grid(modelfunc=func, \n", " param_grid=param_grid,\n", " num_epochs=250,\n", " x_train=x_train,\n", " y_train=y_train)\n", "\n", "htres = htun.print_tuning_results(cvresults, func)\n", "htres.to_csv('n3_cvsrch.dat')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T06:10:10.156751Z", "start_time": "2018-09-11T06:10:10.147263Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%px --target 2 --noblock\n", "import os\n", "os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\" \n", "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0\"\n", "func = scn.resnet\n", "param_grid = dict(num_units=[4], \n", " red_dim=[8,16],\n", " batch_size=[32, 64],\n", " ker_size=[3, 5, 7])\n", " \n", "cvresults = htun.get_cv_grid(modelfunc=func, \n", " param_grid=param_grid,\n", " num_epochs=250,\n", " x_train=x_train,\n", " y_train=y_train)\n", "\n", "htres = htun.print_tuning_results(cvresults, func)\n", "htres.to_csv('n4_cvsrch.dat')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T06:11:12.169586Z", "start_time": "2018-09-11T06:11:12.161932Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%px --target 3 --noblock\n", "import os\n", "os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\" \n", "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"1\"\n", "func = scn.resnet\n", "param_grid = dict(num_units=[5], \n", " red_dim=[8,16],\n", " batch_size=[32, 64],\n", " ker_size=[3, 5, 7])\n", " \n", "cvresults = htun.get_cv_grid(modelfunc=func, \n", " param_grid=param_grid,\n", " num_epochs=250,\n", " x_train=x_train,\n", " y_train=y_train)\n", "\n", "htres = htun.print_tuning_results(cvresults, func)\n", "htres.to_csv('n5_cvsrch.dat')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2018-09-11T06:10:40.811578Z", "start_time": "2018-09-11T06:10:40.804963Z" } }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%%px --target 4 --noblock\n", "import os\n", "os.environ[\"CUDA_DEVICE_ORDER\"]=\"PCI_BUS_ID\" \n", "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0\"\n", "func = scn.resnet\n", "param_grid = dict(num_units=[6], \n", " red_dim=[8,16],\n", " batch_size=[32, 64],\n", " ker_size=[3, 5, 7])\n", " \n", "cvresults = htun.get_cv_grid(modelfunc=func, \n", " param_grid=param_grid,\n", " num_epochs=250,\n", " x_train=x_train,\n", " y_train=y_train)\n", "\n", "htres = htun.print_tuning_results(cvresults, func)\n", "htres.to_csv('n6_cvsrch.dat')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }