123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- #from scipy.special import gamma, binom
- import numpy as np
- import matplotlib.pyplot as plt
- import scipy.sparse as sparse
- from scipy.sparse.linalg import eigsh
- from numpy.linalg import eig
- from mpmath import mp, mpf
- mp.dps = 2000
- voxel_num = 5
- phase_range = np.pi/2 *0.0
- phase_init = np.pi/2 #(0.0)
- U_points = voxel_num * 3000
- noise_ratio = 0.0*(1.2e-16) #(1.2e-16) #1e8
- total_periods=10#DO NOT CHANGE to fit T2s_scale autoscale
- rf_samples_per_period = 20
- # max polynomial order equals rf_samples_per_period * total_periods
- # B0=1.5T freq=64Mhz, period = 15.6 ns
- period = (10.0) #ms
- omega = 2.0*np.pi/period
- #T2s_scale = 0.01 #ms # need to be 10ms
- T2s_scale = total_periods*period/rf_samples_per_period/voxel_num*8 #ms # need to be 10ms
- T2s_min = T2s_scale/20.0
- #ms
- total_steps = rf_samples_per_period*total_periods
- if total_steps % 2 != 0: total_steps -= 1
- time_steps = np.array(mp.linspace((0), (period*total_periods), total_steps))
- tmp = [np.random.rand()*0.0+(1.0) for n in range(voxel_num)]
- voxel_amplitudes = np.array(tmp)
- tmp = [np.random.rand() for n in range(voxel_num)]
- voxel_T2s_decay = np.sort(np.array(tmp))*(T2s_scale-2*T2s_min) + T2s_min
- voxel_all = np.append(voxel_amplitudes,voxel_T2s_decay/T2s_scale)
- if voxel_num == 5:
- # voxel_all = np.array([mpf(0.2),(0.6),(0.02),(0.1)])
- voxel_all = np.array([(0.822628),(0.691376),(0.282906),(0.226013),(0.90703),(0.144985),(0.228563),(0.340353),(0.462462),(0.720518)])
- #voxel_all = np.array([(0.592606),(0.135168),(0.365712),(0.667536),(0.437378),(0.918822),(0.943879),(0.590338),(0.685997),(0.658839)])
- voxel_amplitudes = voxel_all[:voxel_num]
- voxel_T2s_decay = voxel_all[voxel_num:]*T2s_scale
- # a_i = np.array([(0.3),(0.1),(0.15),(0.1)])
- # d_i = np.array([(0.7),(0.9),(0.2),(0.67)])
- # voxel_num = len(a_i)
- voxel_phases = np.array(np.linspace(0,phase_range, voxel_num))
- # if len(voxel_amplitudes) != len(voxel_phases):
- # print("ERROR! Size of amplitude and phase arrays do not match!")
- # raise
- ampl = []
- def gen_rf_signal(time):
- '''Generates demodulated signal at radio frequence using voxels
- amplitudes, T2s decays, and phases.
- '''
- tmp = [mpf(0.0) for n in range(len(time))]
- mag_sin = np.array(tmp)
- mag_cos = np.array(tmp)
- for t in range(len(time)):
- for i in range(voxel_num):
- # mag_sin[t] += a_i[i]*(
- # (d_i[i] + np.random.rand()*noise_ratio)**time[t]
- # )
- amp = voxel_amplitudes[i] * (
- mp.exp(-time[t]/voxel_T2s_decay[i])
- ) + ( 0.0
- # + np.random.rand()*noise_ratio
- )
- # if t == 0:
- #print("a_{:d}".format(i),float(voxel_amplitudes[i]* np.sin(voxel_phases[i] + phase_init)))
- #print("d_{:d}".format(i),float( np.exp(-(period/rf_samples_per_period)/voxel_T2s_decay[i]) ))
- mag_sin[t] += amp * np.sin((voxel_phases[i] + phase_init))
- mag_cos[t] += amp * np.cos((voxel_phases[i] + phase_init))
- mag_sin[t] *= (1 + (np.random.rand()-0.5)*noise_ratio)
- #mag_cos[t] += np.random.rand()*noise_ratio
- return mag_sin, mag_cos
- def factorial(n):
- return mp.gamma(n+1)
- def binom(n,k):
- return factorial(n)/(factorial(k)*factorial(n-k))
- def K ( i, j):
- polyL = L[i] #precomputed shiftedLegendre(i)
- return polyL.coeffs[-j-1]
- def GetU (lambdas):
- n_max = len(lambdas)
- P = np.ones((n_max+1,U_points))
- x = np.linspace(0,1, U_points)
- P[1] = 2*x-1
- for n in range(1,n_max):
- P[n+1] = ((2*n+1)/(n+1)) * (2*x-1) * P[n] - (n/(n+1))*P[n-1]
- U = np.zeros(U_points)
- for i in range (len(lambdas)):
- # if i%10 == 0: print(i)
- U += lambdas[i]*P[i]*np.sqrt(2*i+1)
- #polyL = L[i] #shiftedLegendre(i)
- #U += lambdas[i]*polyL(x)
- return U
- def GetLambda(mag_rf):
- M_cutoff = len(mag_rf)
- all_lambda = []
- for i in range(M_cutoff):
- lambd = mpf(0.0)
- for j in range(i+1):
- lambd += K(i,j)*mpf(mag_rf[j])
- # print("K({:d},{:d}) =".format(i,j), float(K(i,j)))
- all_lambda.append(float(lambd))
- # tmp = [mpf(0.0) for n in range(M_cutoff)]
- # all_lambda = np.array(tmp)
- # all_lambda[10] = mpf(1.0)
- return all_lambda
- def GetAbsLastLambda(mag_rf):
- M_cutoff = len(mag_rf)
- all_lambda = []
- i = M_cutoff - 1
- lambd = mpf(0.0)
- for j in range(i+1):
- lambd += K(i,j)*mpf(mag_rf[j])
- # print("K({:d},{:d}) =".format(i,j), float(K(i,j)))
- all_lambda.append(float(lambd))
- # tmp = [mpf(0.0) for n in range(M_cutoff)]
- # all_lambda = np.array(tmp)
- # all_lambda[10] = mpf(1.0)
- return np.abs(all_lambda[0])
- def shiftedLegendre(n):
- coeffs = []
- for k in range(n+1):
- val = mpf(-1)**n * binom(mpf(n),mpf(k)) * binom(n+k,k) * (-1)**k
- coeffs.insert(0,val*mp.sqrt(2*n+1))
- return np.poly1d(coeffs)
- def GetGnk(c,n,k):
- Gnk = mpf(0.0)
- for m in range(k+1):
- Gnk+=(-1)**m * binom(mpf(k),mpf(m)) * c[n+m]
- return Gnk
- def GetGnkSum(c):
- total = 0
- N = len(c)
- for n in range(2):
- for k in range (N-n-2,N-n):
- Gnk = float(GetGnk(c , n, k))
- if Gnk <0:
- total += Gnk
- return total
- def FixGnk(mag_sin):
- total = GetGnkSum(mag_sin)
- print(total)
-
- def mat1mp (mag_sin):
- N = len(mag_sin)
- NN = int((N-1)/2)
- tmp = np.array([mpf(0.0) for n in range((NN+1)**2)])
- tmp2 = np.reshape(tmp,( NN+1 , NN+1 ))
- mat = mp.matrix(tmp2)
- # mat = np.zeros(( NN+1 , NN+1 ))
- for i in range(NN+1):
- for j in range(NN+1):
- mat[i,j] = mag_sin[i+j+1]
- # print(mat)
- return mat
- def mat1 (mag_sin):
- N = len(mag_sin)
- NN = int((N-1)/2)
- mat = np.zeros(( NN+1 , NN+1 ))
- for i in range(NN+1):
- for j in range(NN+1):
- mat[i,j] = mag_sin[i+j+1]
- # print(mat)
- return mat
- def mat2 (mag_sin):
- N = len(mag_sin)
- NN = int((N-1)/2)
- mat = np.zeros(( NN+1 , NN+1 ))
- for i in range(NN+1):
- for j in range(NN+1):
- mat[i,j] = mag_sin[i+j] - mag_sin[i+j+1]
- return mat
- def fitness(corrector):
- mag_sin = mag_sin_0*(1 + mpf(1.1)*(corrector-0.5)*noise_ratio)
- res = GetAbsLastLambda(mag_sin)
- global globi
- globi = globi + 1
- if globi % 100 == 0: print("REsult", res)
- return res
- mag_sin_0, mag_cos_0 = gen_rf_signal(time_steps)
- mag_sin = np.copy(mag_sin_0)
- mag_cos = np.copy(mag_cos_0)
- L = [] # Shifted Legendre polinomials
- for i in range(len(mag_sin)):
- polyL = shiftedLegendre(i)
- L += [polyL]
- globi = 1
- # import time
- # time1 = time.time()
- # corr = np.zeros(len(mag_sin))
- # fitness(corr)
- # from scipy.optimize import minimize
- # # = minimize(fitness,corr,method='L-BFGS-B')
- # v = minimize(fitness,corr,method='TNC',options={'disp': False, 'minfev': 0, 'scale': None, 'rescale': -1, 'offset': None, 'gtol': -1, 'eps': 1e-08, 'eta': -1, 'maxiter': None, 'maxCGit': -1, 'mesg_num': None, 'ftol': -1, 'xtol': -1, 'stepmx': 0, 'accuracy': 0})
- # # from scipy.optimize import differential_evolution
- # # bounds = []
- # # for i in range(len(mag_sin)):
- # # bounds.append((0,1))
- # # v = differential_evolution(fitness,bounds)
- # fitness(v.x)
- # print(v.fun, "at", v.x)
- # time2 = time.time()
- # print( 'it took %0.5f s' % ((time2-time1)))
- print("N = ",len(mag_sin))
- print("Noise = ", noise_ratio )
- # print("c_n =",["%0.8f"%(x) for x in mag_sin])
- # print("mat1 =",mat1(mag_sin))
- # print("mat2 =",mat2(mag_sin))
- #print( 'eigsh took %0.5f s' % ((time2-time1)))
- #print("eigsh1 = ",v1,"eigsh2 = ",v2)
- # v1f = eig(mat1(mag_sin))
- # v2f = eig(mat2(mag_sin))
- # print("eig1 = ",np.sort(v1f[0]))
- # print("eig2 = ",np.sort(v2f[0]))
- # v = eigsh(mat2(mag_sin), k=6, return_eigenvectors=False, which='LA')
- # print(v)
- # N = len(mag_sin)
- # print("N = ", N)
- # for n in range(2):
- # for k in range (N-n-2,N-n):
- # Gnk = float(GetGnk(mag_sin, n, k))
- # if Gnk <0:
- # print("G",n,k," = ", Gnk)
-
- #FixGnk(mag_sin)
- sign = ""
- # for i in range(voxel_num):
- # if i%5 == 0:
- # sign+="\n"
- # sign = sign + '{:3.2g}'.format(float(a_i[i]))+"/"+'{:3.2g}'.format(float(d_i[i]))+", "
- #
- # # print(mp.exp(-1.0/voxel_T2s_decay[i]))
-
-
- plt.plot(mag_sin, ls=' ', marker='o')
- plt.title("Signal to restore amp/decay_T:"+sign)
- plt.savefig("signal.pdf")
- plt.clf()
- recL = []
-
- x = np.linspace(0,1, U_points)
- # polyL_val = np.array([float(L[-1](x[n])) for n in range(U_points)])
- # plt.plot(x,polyL_val)
- # plt.title("Legendre polynom of order "+str(len(L)))
- # plt.savefig("polyL.pdf")
- # plt.clf()
- #print("Before lambda.")
- import time
- time1 = time.time()
- lambdas = GetLambda(mag_sin)
- time2 = time.time()
- print( 'GetLambda took %0.5f s' % ((time2-time1)))
- print((lambdas))
- U = GetU(lambdas)
- sign =""
- for i in range(voxel_num):
- sign+="{:4.3g}, ".format(float( mp.exp(-(period/rf_samples_per_period)/voxel_T2s_decay[i]) ))
- #print(sign)
- x = np.linspace(0,1, U_points)
- mag_x = np.linspace(0,1, len(mag_sin))
- import matplotlib as matplotlib
- matplotlib.rcParams.update({'font.size': 28})
- plt.figure(figsize=(30, 20))
- plt.plot(x,U, lw=0.2)
- plt.title(r"$\sum^M \lambda_i L_i(x)$", y=1.02)
- plt.xlim(0,1)
- plt.xlabel(sign, fontsize=28)
- plt.savefig("plt.pdf")
- plt.clf()
- # rms = np.sqrt(np.mean(U**2))/np.max(U)
- # #print(rms)
- # status = "OK"
- # if rms < 0.2: status = "BAD"
- # print("rms =", rms, status)
|