123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- #!/usr/bin/env python3
- # -*- coding: UTF-8 -*-
- from scipy.optimize import differential_evolution
- from scipy.optimize import minimize
- from scipy.special import gamma, binom
- import numpy as np
- voxel_num = 2
- phase_range = np.pi/2
- phase_init = 0.0
- U_points = voxel_num * 1000
- noise_ratio = 0.0 #1e8
- total_periods = 8
- rf_samples_per_period = 16
- # B0=1.5T freq=64Mhz, period = 15.6 ns
- period = 15.6/1000/1000 #ms
- omega = 2.0*np.pi/period
- #T2s_scale = 0.01 #ms # need to be 10ms
- T2s_scale = total_periods*period #ms # need to be 10ms
- T2s_min = T2s_scale/1000.0
- #print(period)
- #ms
- time_steps = np.linspace(0, period*total_periods, rf_samples_per_period*total_periods)
- voxel_amplitudes = np.random.rand(voxel_num)
- voxel_T2s_decay = np.random.rand(voxel_num)*(T2s_scale-T2s_min) + T2s_min
- voxel_all = np.append(voxel_amplitudes,voxel_T2s_decay/T2s_scale)
- if voxel_num == 5:
- voxel_all = np.array([0.822628,0.691376,0.282906,0.226013,0.90703,0.144985,0.328563,0.440353,0.662462,0.720518])
- #voxel_all = [0.592606,0.135168,0.365712,0.667536,0.437378,0.918822,0.943879,0.590338,0.685997,0.658839]
- voxel_amplitudes = voxel_all[:voxel_num]
- voxel_T2s_decay = voxel_all[voxel_num:]*T2s_scale
- #first estimate 0.551777 0.190833 0.271438 0.814036 0.347389 0.926153 0.908453 0.581414 0.666012 0.673226
- #voxel_amplitudes = [0.4, 0.8, 0]
- #voxel_amplitudes = [0.9, 0.092893218813452, 0.5]
- #voxel_amplitudes = [0.6, 0.517157287525381, 0.4]
- test_amplitudes = np.zeros(voxel_num)
- test_amplitudes = voxel_amplitudes
- voxel_phases = np.linspace(0,phase_range, voxel_num)
- if len(voxel_amplitudes) != len(voxel_phases):
- print("ERROR! Size of amplitude and phase arrays do not match!")
- raise
- def gen_rf_signal(time):
- mag_sin = 0.0
- mag_cos = 0.0
- for i in range(voxel_num):
- amp = voxel_amplitudes[i] * (
- np.exp(-time/voxel_T2s_decay[i])
- ) + ( 0.0
- # + np.random.rand()*noise_ratio
- )
- mag_sin += amp * np.sin(
- voxel_phases[i] + phase_init
- )
- mag_cos += amp * np.cos(
- voxel_phases[i] + phase_init
- )
- return mag_sin, mag_cos
- def factorial(n):
- return gamma(n+1)
- def shiftedLegendre(n):
- coeffs = []
- for k in range(n+1):
- val = (-1)**n * binom(n,k) * binom(n+k,k) * (-1)**k
- coeffs.insert(0,val)
- return np.poly1d(coeffs)
- def K ( i, j):
- polyL = L[i] #shiftedLegendre(i)
- return polyL.coeffs[-j-1]
- def GetLambda(mag_rf):
- M_cutoff = len(mag_rf)
- all_lambda = []
- for i in range(M_cutoff):
- lambd = 0
- for j in range(i+1):
- lambd += K(i,j)*mag_rf[i]
- all_lambda.append(lambd)
- all_lambda = np.zeros(M_cutoff)
- all_lambda[19] = 1
- return all_lambda
- def GetU (lambdas):
- x = np.linspace(0,1, U_points)
- U = np.zeros(U_points)
- for i in range (len(lambdas)):
- polyL = L[i] #shiftedLegendre(i)
- U += lambdas[i]*polyL(x)
- return U
- mag_sin, mag_cos = gen_rf_signal(time_steps)
- L = [] # Shifted Legendre polinomials
- for i in range(len(mag_sin)):
- polyL = shiftedLegendre(i)
- L += [polyL]
- #print(len(L))
- print(L[20])
- lambdas = GetLambda(mag_sin)
- U = GetU(lambdas)
- import matplotlib.pyplot as plt
- x = np.linspace(0,1, U_points)
- mag_x = np.linspace(0,1, len(mag_sin))
- # crop = 1
- # plt.plot(x[:-crop],U[:-crop])
- plt.plot(x,U)
- # plt.plot(mag_x,mag_sin)
- #plt.xlim(0.2,0.8)
- #plt.ylim(0.0,2.8)
- plt.savefig("plt.pdf")
- #plt.show()
- #print(voxel_phases)
- #print (voxel_amplitudes)
- # import matplotlib.pyplot as plt
- # plt.plot(time_steps, mag_sin)
- # plt.plot(time_steps, mag_cos)
- # plt.show()
- # #print(fitness(test_amplitudes))
- amplitude_minmax = (0,1)
- T2s_minmax = (T2s_min/T2s_scale,1)
- x0 = np.full(2*voxel_num,0.5)
- x0 = [0.551777,0.190833,0.271438,0.814036,0.347389,0.926153,0.908453,0.581414,0.666012,0.673226]
- # #result.x[voxel_num:] = result.x[voxel_num:]/T2s_scale
- # print("amp/decay", voxel_amplitudes,voxel_T2s_decay)
- # print("all ", voxel_all)
- # print("eval ",result.x, "\n=====> fun=",result.fun)
- # # print("Diff")
- # # print((voxel_amplitudes-result.x))
- # # print("percent")
- # print("percent",np.abs(voxel_all-result.x)*100)
- # if np.max(np.abs(voxel_all[:voxel_num]-result.x[:voxel_num])*100)>0.5:
- # print ("============== !!!LARGE!!! ===============")
- # print("\n")
|