#!/usr/bin/env python3 # -*- coding: UTF-8 -*- from scipy.optimize import differential_evolution from scipy.optimize import minimize import numpy as np voxel_num = 5 phase_range = np.pi/2 phase_init = 0.0 noise_ratio = 0.0 #1e8 total_periods = 50 rf_samples_per_period = 1 # B0=1.5T freq=64Mhz, period = 15.6 ns period = 15.6/1000/1000 #ms omega = 2.0*np.pi/period #T2s_scale = 0.01 #ms # need to be 10ms T2s_scale = total_periods*period #ms # need to be 10ms T2s_min = T2s_scale/1000.0 #print(period) #ms time_steps = np.linspace(0, period*total_periods, rf_samples_per_period*total_periods) voxel_amplitudes = np.random.rand(voxel_num) voxel_T2s_decay = np.random.rand(voxel_num)*(T2s_scale-T2s_min) + T2s_min voxel_all = np.append(voxel_amplitudes,voxel_T2s_decay/T2s_scale) if voxel_num == 5: voxel_all = [0.822628,0.691376,0.282906,0.226013,0.90703,0.144985,0.328563,0.440353,0.662462,0.720518] voxel_all = [0.592606,0.135168,0.365712,0.667536,0.437378,0.918822,0.943879,0.590338,0.685997,0.658839] #first estimate 0.551777 0.190833 0.271438 0.814036 0.347389 0.926153 0.908453 0.581414 0.666012 0.673226 #voxel_amplitudes = [0.4, 0.8, 0] #voxel_amplitudes = [0.9, 0.092893218813452, 0.5] #voxel_amplitudes = [0.6, 0.517157287525381, 0.4] test_amplitudes = np.zeros(voxel_num) test_amplitudes = voxel_amplitudes voxel_phases = np.linspace(0,phase_range, voxel_num) #print(voxel_phases) if len(voxel_amplitudes) != len(voxel_phases): print("ERROR! Size of amplitude and phase arrays do not match!") raise def gen_rf_signal(time): mag_sin = 0.0 mag_cos = 0.0 for i in range(voxel_num): amp = voxel_amplitudes[i] * ( np.exp(-time/voxel_T2s_decay[i]) ) + ( 0.0 # + np.random.rand()*noise_ratio ) mag_sin += amp * np.sin( voxel_phases[i] + phase_init ) mag_cos += amp * np.cos( voxel_phases[i] + phase_init ) return mag_sin, mag_cos def assumed_signal(time, values): amplitudes = values[:voxel_num] T2s_decay = values[voxel_num:]*T2s_scale mag_sin = 0.0 mag_cos = 0.0 for i in range(voxel_num): amp = amplitudes[i] * ( np.exp(-time/T2s_decay[i]) ) mag_sin += amp * np.sin( voxel_phases[i] + phase_init ) mag_cos += amp * np.cos( voxel_phases[i] + phase_init ) return mag_sin, mag_cos mag_sin, mag_cos = gen_rf_signal(time_steps) def fitness(amplitudes, *args): assumed_sin, assumed_cos = assumed_signal(time_steps, amplitudes) diff = 0 #amp = np.sqrt(mag_sin**2 + mag_cos**2) # diff += np.sqrt(np.mean(np.square((mag_sin - assumed_sin)/amp))) # diff += np.sqrt(np.mean(np.square((mag_cos - assumed_cos)/amp))) diff += np.sqrt(np.mean(np.square((mag_sin - assumed_sin)))) diff += np.sqrt(np.mean(np.square((mag_cos - assumed_cos)))) diff += np.sqrt(np.mean(np.square(mag_sin/mag_cos - assumed_sin/assumed_cos))) return diff def hyper_fit(amplitudes, *args): result = minimize(fitness, amplitudes, bounds = bounds, method='L-BFGS-B', options={'ftol': 1e-16,'gtol': 1e-16, 'disp': False}) print (result.fun) return result.fun #print(voxel_phases) #print (voxel_amplitudes) # import matplotlib.pyplot as plt # plt.plot(time_steps, mag_sin) # plt.plot(time_steps, mag_cos) # plt.show() # #print(fitness(test_amplitudes)) bounds = [] amplitude_minmax = (0,1) T2s_minmax = (T2s_min/T2s_scale,1) for i in range(voxel_num): bounds.append(amplitude_minmax) for i in range(voxel_num): bounds.append(T2s_minmax) x0 = np.full(2*voxel_num,0.5) x0 = [0.551777,0.190833,0.271438,0.814036,0.347389,0.926153,0.908453,0.581414,0.666012,0.673226] # result = minimize(hyper_fit, x0, bounds = bounds, method='L-BFGS-B', options={'ftol': 1e-16,'gtol': 1e-16, 'disp': True}) result = minimize(fitness, x0, bounds = bounds, method='L-BFGS-B', options={'ftol': 1e-16,'gtol': 1e-16, 'disp': True}) # result = differential_evolution(hyper_fit, bounds, polish=True # , maxiter = voxel_num*2*500 # , disp = True # ) # bestresult = minimize(fitness, x0, bounds = bounds, method='L-BFGS-B', options={'ftol': 1e-16,'gtol': 1e-16, 'disp': True}) # for x in range(50): # print("Try to solve: ", x) # x0 = np.random.rand(2*voxel_num) # result = minimize(fitness, x0, bounds = bounds, method='L-BFGS-B', options={'ftol': 1e-16,'gtol': 1e-16, 'disp': False}) # if result.fun < bestresult.fun: # bestresult = result # print("new best: ", bestresult.fun) # result = bestresult #result = minimize(fitness, x0, bounds = bounds, method='COBYLA', tol=1e-16, options={ 'maxiter':20000,'disp': True}) #result = minimize(fitness, result.x, bounds = bounds, method='L-BFGS-B', options={'gtol': 1e-16, 'disp': True}) #result = minimize(hyper_fit, x0, bounds = bounds, method='Nelder-Mead', tol=1e-16, options={'maxiter':100,'disp': True}) #result.x[voxel_num:] = result.x[voxel_num:]/T2s_scale print("amp/decay", voxel_amplitudes,voxel_T2s_decay) print("all ", voxel_all) print("eval ",result.x, "\n=====> fun=",result.fun) # print("Diff") # print((voxel_amplitudes-result.x)) # print("percent") print("percent",np.abs(voxel_all-result.x)*100) if np.max(np.abs(voxel_all[:voxel_num]-result.x[:voxel_num])*100)>0.5: print ("============== !!!LARGE!!! ===============") print("\n")