|
@@ -15,34 +15,34 @@ U_points = voxel_num * 1000
|
|
|
# noise_ratio = mpf(0.0) #1e8
|
|
|
|
|
|
total_periods = 10
|
|
|
-rf_samples_per_period = 5
|
|
|
+rf_samples_per_period = 10
|
|
|
# max polynomial order equals rf_samples_per_period * total_periods
|
|
|
|
|
|
# B0=1.5T freq=64Mhz, period = 15.6 ns
|
|
|
-period = mpf(15.6/1000/1000) #ms
|
|
|
+period = mpf(1/(total_periods*rf_samples_per_period)) #ms
|
|
|
omega = 2.0*mp.pi/period
|
|
|
#T2s_scale = 0.01 #ms # need to be 10ms
|
|
|
T2s_scale = total_periods*period #ms # need to be 10ms
|
|
|
T2s_min = T2s_scale/1000.0
|
|
|
#print(period)
|
|
|
#ms
|
|
|
-time_steps = np.array(mp.linspace(mpf(0), mpf(period*total_periods), rf_samples_per_period*total_periods))
|
|
|
+time_steps = np.array(mp.linspace(mpf(0), mpf(rf_samples_per_period*total_periods), rf_samples_per_period*total_periods+1))
|
|
|
tmp = [mp.rand() for n in range(voxel_num)]
|
|
|
voxel_amplitudes = np.array(tmp)
|
|
|
tmp = [mp.rand() for n in range(voxel_num)]
|
|
|
voxel_T2s_decay = np.array(tmp)*(T2s_scale-T2s_min) + T2s_min
|
|
|
voxel_all = np.append(voxel_amplitudes,voxel_T2s_decay/T2s_scale)
|
|
|
-if voxel_num == 5:
|
|
|
- voxel_all = np.array([mpf(0.822628),mpf(0.691376),mpf(0.282906),mpf(0.226013),mpf(0.90703),mpf(0.144985),mpf(0.328563),mpf(0.440353),mpf(0.662462),mpf(0.720518)])
|
|
|
- #voxel_all = np.array([mpf(0.592606),mpf(0.135168),mpf(0.365712),mpf(0.667536),mpf(0.437378),mpf(0.918822),mpf(0.943879),mpf(0.590338),mpf(0.685997),mpf(0.658839)])
|
|
|
- voxel_amplitudes = voxel_all[:voxel_num]
|
|
|
- voxel_T2s_decay = voxel_all[voxel_num:]*T2s_scale
|
|
|
+a_i = np.array([mpf(0.3),mpf(0.1),mpf(0.15),mpf(0.1)])
|
|
|
+d_i = np.array([mpf(0.7),mpf(0.9),mpf(0.2),mpf(0.6)])
|
|
|
+voxel_num = len(a_i)
|
|
|
+
|
|
|
|
|
|
voxel_phases = np.array(mp.linspace(0,phase_range, voxel_num))
|
|
|
-if len(voxel_amplitudes) != len(voxel_phases):
|
|
|
- print("ERROR! Size of amplitude and phase arrays do not match!")
|
|
|
- raise
|
|
|
+# if len(voxel_amplitudes) != len(voxel_phases):
|
|
|
+# print("ERROR! Size of amplitude and phase arrays do not match!")
|
|
|
+# raise
|
|
|
|
|
|
+ampl = []
|
|
|
def gen_rf_signal(time):
|
|
|
'''Generates demodulated signal at radio frequence using voxels
|
|
|
amplitudes, T2s decays, and phases.
|
|
@@ -50,20 +50,29 @@ def gen_rf_signal(time):
|
|
|
'''
|
|
|
tmp = [mpf(0.0) for n in range(len(time))]
|
|
|
mag_sin = np.array(tmp)
|
|
|
- mag_cos = np.array(tmp)
|
|
|
+ mag_cos = np.array(tmp)
|
|
|
for t in range(len(time)):
|
|
|
+ #print("time",float(time[t]))
|
|
|
for i in range(voxel_num):
|
|
|
- amp = voxel_amplitudes[i] * (
|
|
|
- mp.exp(-time[t]/voxel_T2s_decay[i])
|
|
|
- ) + ( 0.0
|
|
|
- # + np.random.rand()*noise_ratio
|
|
|
- )
|
|
|
- mag_sin[t] += amp * mp.sin(
|
|
|
- voxel_phases[i] + phase_init
|
|
|
- )
|
|
|
- mag_cos[t] += amp * mp.cos(
|
|
|
- voxel_phases[i] + phase_init
|
|
|
- )
|
|
|
+ mag_sin[t] += a_i[i]*(d_i[i]**time[t])
|
|
|
+ # print("a_{:d} =".format(i),float(a_i[i]),", ",
|
|
|
+ # "d_{:d} =".format(i),float(d_i[i]))
|
|
|
+
|
|
|
+ # amp = voxel_amplitudes[i] * (
|
|
|
+ # mp.exp(-time[t]/voxel_T2s_decay[i])
|
|
|
+ # ) + ( 0.0
|
|
|
+ # # + np.random.rand()*noise_ratio
|
|
|
+ # )
|
|
|
+ # print("a_{:d}".format(i),float(voxel_amplitudes[i]* mp.sin(
|
|
|
+ # voxel_phases[i] + phase_init
|
|
|
+ # )))
|
|
|
+ # print("d_{:d}".format(i),float( mp.exp(-1.0/voxel_T2s_decay[i]) ))
|
|
|
+ # mag_sin[t] += amp * mp.sin(
|
|
|
+ # voxel_phases[i] + phase_init
|
|
|
+ # )
|
|
|
+ # mag_cos[t] += amp * mp.cos(
|
|
|
+ # voxel_phases[i] + phase_init
|
|
|
+ # )
|
|
|
return mag_sin, mag_cos
|
|
|
|
|
|
def factorial(n):
|
|
@@ -76,7 +85,7 @@ def shiftedLegendre(n):
|
|
|
coeffs = []
|
|
|
for k in range(n+1):
|
|
|
val = mpf(-1)**n * binom(mpf(n),mpf(k)) * binom(n+k,k) * (-1)**k
|
|
|
- coeffs.insert(0,val)
|
|
|
+ coeffs.insert(0,val*mp.sqrt(2*n+1))
|
|
|
return np.poly1d(coeffs)
|
|
|
|
|
|
def K ( i, j):
|
|
@@ -98,13 +107,15 @@ def GetLambda(mag_rf):
|
|
|
M_cutoff = len(mag_rf)
|
|
|
all_lambda = []
|
|
|
for i in range(M_cutoff):
|
|
|
+# print("M = ", i)
|
|
|
lambd = mpf(0)
|
|
|
for j in range(i+1):
|
|
|
- lambd += K(i,j)*mag_rf[i]
|
|
|
+ lambd += K(i,j)*mag_rf[j]
|
|
|
+# print("K({:d},{:d}) =".format(i,j), float(K(i,j)))
|
|
|
all_lambda.append(lambd)
|
|
|
# tmp = [mpf(0.0) for n in range(M_cutoff)]
|
|
|
# all_lambda = np.array(tmp)
|
|
|
- # all_lambda[29] = mpf(1.0)
|
|
|
+ # all_lambda[10] = mpf(1.0)
|
|
|
return all_lambda
|
|
|
|
|
|
|
|
@@ -114,12 +125,12 @@ sign = ""
|
|
|
for i in range(voxel_num):
|
|
|
if i%5 == 0:
|
|
|
sign+="\n"
|
|
|
- sign = sign + '{:3.2g}'.format(float(voxel_amplitudes[i] * mp.sin(
|
|
|
- voxel_phases[i] + phase_init
|
|
|
- )))+"/"+'{:3.2g}'.format(float(voxel_T2s_decay[i]))+", "
|
|
|
-
|
|
|
+ sign = sign + '{:3.2g}'.format(float(a_i[i]))+"/"+'{:3.2g}'.format(float(d_i[i]))+", "
|
|
|
|
|
|
-plt.plot(mag_sin, ls='-', marker='o')
|
|
|
+# print(mp.exp(-1.0/voxel_T2s_decay[i]))
|
|
|
+
|
|
|
+
|
|
|
+plt.plot(mag_sin, ls=' ', marker='o')
|
|
|
plt.title("Signal to restore amp/decay_T:"+sign)
|
|
|
plt.savefig("signal.pdf")
|
|
|
plt.clf()
|
|
@@ -127,7 +138,9 @@ plt.clf()
|
|
|
|
|
|
L = [] # Shifted Legendre polinomials
|
|
|
for i in range(len(mag_sin)):
|
|
|
- polyL = shiftedLegendre(i)
|
|
|
+ polyL = shiftedLegendre(i)
|
|
|
+ # print("i=",i," L_i:")
|
|
|
+ # print(polyL)
|
|
|
L += [polyL]
|
|
|
|
|
|
x = np.linspace(0,1, U_points)
|
|
@@ -147,6 +160,7 @@ U = GetU(lambdas)
|
|
|
x = np.linspace(0,1, U_points)
|
|
|
mag_x = np.linspace(0,1, len(mag_sin))
|
|
|
plt.plot(x,U)
|
|
|
+plt.title(r"$\sum^M \lambda_i L_i(x)$", y=1.02)
|
|
|
plt.savefig("plt.pdf")
|
|
|
plt.clf()
|
|
|
|