소스 검색

Update on Overleaf.

k.ladutenko 8 년 전
부모
커밋
30648e7ecb
1개의 변경된 파일25개의 추가작업 그리고 23개의 파일을 삭제
  1. 25 23
      main.tex

+ 25 - 23
main.tex

@@ -309,11 +309,12 @@ where $\theta$ is the temporal pulse width at the half maximum (FWHM), $t_0$ is
 \subsection{Material ionization}
 
 To account for the material ionization that is induced by a sufficiently intense laser field inside the particle, we couple Maxwell's equations with the kinetic equation for the electron-hole plasma as follows
-\begin{figure*}[ht!]
-\centering
-\includegraphics[width=120mm]{fig2.png}
-\caption{\label{fig2} Free carrier density snapshots of electron plasma evolution inside Si nanoparticle taken a) $30$ fs b) $10$ fs before the pulse peak, c) at the pulse peak, d) $10$ fs e) $30$ fs after the pulse peak. Pulse duration $50$ fs (FWHM). Wavelength $800$ nm in air. Radius of the nanoparticle $R \approx 105$ nm, corresponding to the resonance condition. Graph shows the dependence of the asymmetric parameter of electron plasma density on the average electron density in the front half of the nanoparticle. $n_{cr} = 5\cdot{10}^{21}$ cm$^{-3}$ is the critical plasma resonance electron density for silicon.}
-\end{figure*}
+% \begin{figure*}[ht!]
+% \centering
+% \includegraphics[width=120mm]{fig2.png}
+% \caption{\label{fig2} Free carrier density snapshots of electron plasma evolution inside Si nanoparticle taken a) $30$ fs b) $10$ fs before the pulse peak, c) at the pulse peak, d) $10$ fs e) $30$ fs after the pulse peak. Pulse duration $50$ fs (FWHM). Wavelength $800$ nm in air. Radius of the nanoparticle $R \approx 105$ nm, corresponding to the resonance condition. Graph shows the dependence of the asymmetric parameter of electron plasma density on the average electron density in the front half of the nanoparticle. $n_{cr} = 5\cdot{10}^{21}$ cm$^{-3}$ is the critical plasma resonance electron density for silicon.}
+% \end{figure*}
+
 
 The time-dependent conduction-band carrier density evolution is described by a rate equation that was proposed by van Driel \cite{Van1987}. This equation takes into account such processes as photoionization, avalanche ionization and Auger recombination, and is written as
 \begin{equation} \label{Dens} \displaystyle{\frac{\partial{n_e}}{\partial t} = \frac{n_a-n_e}{n_a}\left(\frac{\sigma_1I}{\hbar\omega} + \frac{\sigma_2I^2}{2\hbar\omega}\right) + \alpha{I}n_e - \frac{C\cdot{n_e}^3}{C\tau_{rec}n_e^2+1},} \end{equation} 
@@ -326,7 +327,8 @@ where $I=\frac{n}{2}\sqrt{\frac{\epsilon_0}{\mu_0}}\left|\vec{E}\right|^2$ is th
 
 \begin{figure*}[ht!]
 \centering
-\includegraphics[width=0.9\textwidth]{Ne_105nm_800}
+\includegraphics[width=0.9\textwidth]{2nm_75}
+\includegraphics[width=0.9\textwidth]{2nm_115}
 \caption{\label{plasma-105nm} Split figure \ref{fig2} into two, this is first part.}
 \end{figure*}
 
@@ -383,16 +385,16 @@ Of cause, this plasma is expected to diffuse after the considered time and turn
 \subsection{Effects of nanoparticle size/scattering efficiency factor
 on scattering directions}
 
-\begin{figure}[ht] \centering
-\includegraphics[width=90mm]{fig3.png}
-\caption{\label{fig3} a) Scattering efficiency factor $Q_{sca}$
-dependence on the radius $R$ of non-excited silicon nanoparticle
-calculated by Mie theory; b) Parameter of forward/backward scattering
-dependence on the radius $R$ calculated by Mie theory for non-excited
-silicon nanoparticle c) Optimization parameter $K$ dependence on the
-average electron density $n_e^{front}$ in the front half of the
-nanoparticle for indicated radii (1-7).}
-\end{figure}
+% \begin{figure}[ht] \centering
+% \includegraphics[width=90mm]{fig3.png}
+% \caption{\label{fig3} a) Scattering efficiency factor $Q_{sca}$
+% dependence on the radius $R$ of non-excited silicon nanoparticle
+% calculated by Mie theory; b) Parameter of forward/backward scattering
+% dependence on the radius $R$ calculated by Mie theory for non-excited
+% silicon nanoparticle c) Optimization parameter $K$ dependence on the
+% average electron density $n_e^{front}$ in the front half of the
+% nanoparticle for indicated radii (1-7).}
+% \end{figure}
 
 We have discussed the EHP kinetics for a silicon nanoparticle of a fixed radius $R \approx 105$ nm. In what follows, we investigate the influence of the nanoparticle size on
 the EHP patterns and temporal evolution during ultrashort laser
@@ -458,13 +460,13 @@ nanoparticle is out of quasi-resonant condition and the intensity
 enhancements in Fig. \ref{fig4}(c) are weaker than in
 Fig. \ref{fig4}(b). Therefore, the generated nanoplasma acts like a quasi-metallic nonconcentric nanoshell inside the nanoparticle, providing a symmetry reduction \cite{Wang2006}.
 
-\begin{figure}[ht] \centering
-\includegraphics[width=90mm]{fig4.png}
-\caption{\label{fig4} a) Electron plasma distribution inside Si
-nanoparticle $R \approx 95$ nm $50$ fs after the pulse peak; (Kostya: Is it scattering field intensity snapshot  XXX fs after the second pulse maxima passed the particle?) Intensity
-distributions around and inside the nanoparticle b) without plasma, c)
-with electron plasma inside.}
-\end{figure}
+% \begin{figure}[ht] \centering
+% \includegraphics[width=90mm]{fig4.png}
+% \caption{\label{fig4} a) Electron plasma distribution inside Si
+% nanoparticle $R \approx 95$ nm $50$ fs after the pulse peak; (Kostya: Is it scattering field intensity snapshot  XXX fs after the second pulse maxima passed the particle?) Intensity
+% distributions around and inside the nanoparticle b) without plasma, c)
+% with electron plasma inside.}
+% \end{figure}
 
 %\begin{figure} %\centering
 % \includegraphics[height=0.7\linewidth]{Si-flow-R140-XYZ-Eabs}