Konstantin Ladutenko 7 роки тому
батько
коміт
0197995680
1 змінених файлів з 12 додано та 14 видалено
  1. 12 14
      main.tex

+ 12 - 14
main.tex

@@ -372,7 +372,7 @@ Gaussian slightly focused beam as follows
 \times\;{exp}\left(-\frac{4\ln{2}(t-t_0)^2}{\theta^2}\right),
 \end{aligned}
 \end{align}
-where $\theta \approx 80$~\textit{fs} is the temporal pulse width at the half maximum (FWHM),
+where $\theta \approx 130$~\textit{fs} is the temporal pulse width at the half maximum (FWHM),
 $t_0$ is a time delay, $w_0 = 3{\mu}m$ is the waist beam,
 $w(z) = {w_0}\sqrt{1+(\frac{z}{z_R})^2}$ is the Gaussian's beam spot
 size, $\omega = 2{\pi}c/{\lambda}$ is the angular frequency,
@@ -416,8 +416,8 @@ Einstein formula $D = k_B T_e \tau/m^* \approx (1$--$\,2)\cdot{10}^{-3}$ m$^2$/s
 ($k_B$ is the Boltzmann constant, $T_e$ is the electron temperature,
 $\tau=1$~\textit{fs} is the collision time, $m^* = 0.18 m_e$ is the effective
 mass), where $T_e \approx 2*{10}^4$ K for $N_e$ close to $N_{cr}$ \cite{Ramer2014}. It
-means that during the pulse duration ($\approx 80$~\textit{fs}) the diffusion
-length will be around 5$\,$--10~nm for $N_e$ close to $N_{cr}$.
+means that during the pulse duration ($\approx 130$~\textit{fs}) the diffusion
+length will be around 10$\,$--15~nm for $N_e$ close to $N_{cr}$.
 
 \begin{figure}[ht!] 
 \centering
@@ -464,16 +464,14 @@ license.
 \begin{figure*}[p]
  \centering
  \includegraphics[width=145mm]{time-evolution-I-no-NP.pdf}
- \caption{\label{time-evolution} Temporal EHP (a, c, e) and asymmetry
-   factor $G_{N_e}$ (b, d, f) evolution for different Si nanoparticle
-   radii of (a, b) $R = 75$~nm, (c, d) $R = 100$~nm, and (e, f)
-   $R = 115$~nm. Pulse duration $80$~\textit{fs}
-   (FWHM). \red{\textbf{TODO:} on the plot it looks more than 100 fs
-     for FWHM!!! Anton? } Wavelength $800$~nm in air. (b, d, f)
-   Different stages of EHP evolution shown in Fig.~\ref{plasma-grid}
-   are indicated. The temporal evolution of the incident Gaussian beam
-   intensity is also shown. Peak laser fluence is fixed to be
-   $0.125$~J/cm$^2$.}
+\caption{\label{time-evolution} Temporal EHP (a, c, e) and asymmetry
+  factor $G_{N_e}$ (b, d, f) evolution for different Si nanoparticle
+  radii of (a, b) $R = 75$~nm, (c, d) $R = 100$~nm, and (e, f)
+  $R = 115$~nm. Pulse duration $130$~\textit{fs} (FWHM).  Wavelength
+  $800$~nm in air. (b, d, f) Different stages of EHP evolution shown
+  in Fig.~\ref{plasma-grid} are indicated. The temporal evolution of
+  Gaussian beam intensity is also shown. Peak laser fluence is fixed
+  to be $0.125$~J/cm$^2$.}
 \vspace*{\floatsep}
  \centering
  \includegraphics[width=150mm]{plasma-grid.pdf}
@@ -483,7 +481,7 @@ license.
    $1-4$: (1) first optical cycle, (2) extremum at few optical cycles,
    (3) Mie theory, (4) nonlinear effects). $\Delta{Re(\epsilon)}$
    indicates the real part change of the dielectric function defined
-   by Equation (\ref{Index}). Pulse duration $80$~\textit{fs}
+   by Equation (\ref{Index}). Pulse duration $130$~\textit{fs}
    (FWHM). Wavelength $800$~nm in air. Peak laser fluence is fixed to
    be $0.125$~J/cm$^2$.}
  \end{figure*}