123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- %{
- Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.
- This file is part of GratingFMM.
- GratingFMM is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 2 of the License, or
- (at your option) any later version.
- GratingFMM is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GratingFMM. If not, see <https://www.gnu.org/licenses/>.
- %}
- %% description:
- % calculation of a grating S-matrix by the Fourier Modal Method
- % in the case of the diffraction by 2D gratings being periodic in x and y
- % dimensions of the Cartesian coordinates
- %% input:
- % xno, yno: numbers of Fourier harmonics
- % kx0, ky0: incident plane wave x and y projections (Bloch wavevector projections)
- % kgx, kgy: wavelength-to-period ratios (grating vector projections)
- % kh: grating depth multiplied by the vacuum wavenumber
- % eps1: permittivity of the substrate
- % eps2: permittivity of the superstrate
- % FE: Fourier matrix of the grating profile
- %% output:
- % SM: scattering matrix of size (2*no,2*no,2,2) where no = xno*yno
- % is the total number of Fourier harmonics
- % block SM(:,:,1,1) corresponds to refelection from substrate to substrate
- % block SM(:,:,2,2) corresponds to refelection from superstrate to superstrate
- % block SM(:,:,2,1) corresponds to transmission from substrate to superstrate
- % block SM(:,:,1,2) corresponds to transmission from superstrate to substrate
- % first (no) components in each of the two first dimensions of the S-matrix
- % correspond to the TE polarization, and indeces from (no+1) to (2*no)
- % correspond to the TM polarization
- % central harmonic index is ind_0 = (ceil(xno/2)-1)*yno+ceil(yno/2)
- % for example, an ampitude of the TE-polarized transmitted wave to i-th diffraction order
- % from the substrate to the superstrate under the TM plane wave illumination
- % with unit amplitude is SM(ind_0+i, no+ind_0, 2, 1)
- %% implementation
- function [SM] = fmmtd(xno, yno, kx0, ky0, kgx, kgy, kh, eps1, eps2, FE)
- no = xno*yno;
- ib1 = 1:no;
- ib2 = no+1:2*no;
- ib3 = 2*no+1:3*no;
- ib4 = 3*no+1:4*no;
- % wavevector projections
- [kz1, kz2, kx, ky, kxy] = fmmtd_kxyz(xno, yno, kx0, ky0, kgx, kgy, eps1, eps2);
-
- ME = toeplitz2(FE{1,1},xno,yno);
- MU = toeplitz2(FE{1,2},xno,yno);
- % solve the eigenvalue problem:
- EV = zeros(2*no,2*no);
- HV = zeros(2*no,2*no);
- % matrix for the electric field
- EV(ib1,ib1) = ((kx').*MU).*ky;
- EV(ib1,ib2) = -((kx').*MU).*kx;
- EV(2*no*no+1:2*no+1:end) = EV(2*no*no+1:2*no+1:end) + 1;
- EV(ib2,ib1) = ((ky').*MU).*ky;
- EV(no+1:2*no+1:2*no*no) = EV(no+1:2*no+1:2*no*no) - 1;
- EV(ib2,ib2) = -((ky').*MU).*kx;
- % matrix for the magnetic field
- HV(2*no*no+no+1:2*no+1:end) = HV(2*no*no+no+1:2*no+1:end) + kx.*ky;
- HV(1:2*no+1:2*no*no) = -HV(2*no*no+no+1:2*no+1:end);
- HV(ib1,ib2) = -ME;
- HV(2*no*no+1:2*no+1:end) = HV(2*no*no+1:2*no+1:end) + kx.^2;
- HV(ib2,ib1) = ME;
- HV(no+1:2*no+1:2*no*no) = HV(no+1:2*no+1:2*no*no) - ky.^2;
- % solve the eigenvalue problem for the electric field
- [EV,MB] = eig(EV*HV);
- beta = transpose(sqrt(diag(MB))); % row of eigenvalues
- ind = angle(beta) < -1e-7; % check the branch of the square root
- beta(ind) = -beta(ind);
- % calculate the magnetic field amplitude eigen vectors
- HV = (HV*EV).*(1./beta);
- % calculate T-matrices
- TS = fmmtd_calc_T(no,EV,HV,kx,ky,kxy,kz1,eps1); % substrate-grating T-matrix
- TC = fmmtd_calc_T(no,EV,HV,kx,ky,kxy,kz2,eps2); % grating-cover T-matrix
- % combine T-matrices
- bexp = exp((1i*kh)*beta);
- M1 = zeros(4*no,4*no);
- M2 = zeros(4*no,4*no);
- M1([ib1,ib2],[ib1,ib2]) = TS([ib3,ib4],[ib1,ib2]);
- M1([ib3,ib4],[ib3,ib4]) = TC([ib1,ib2],[ib3,ib4]);
- M1(ib1,ib3) = TS(ib3,ib3).*bexp(ib1);
- M1(ib2,ib3) = TS(ib4,ib3).*bexp(ib1);
- M1(ib1,ib4) = TS(ib3,ib4).*bexp(ib2);
- M1(ib2,ib4) = TS(ib4,ib4).*bexp(ib2);
- M1(ib3,ib1) = TC(ib1,ib1).*bexp(ib1);
- M1(ib4,ib1) = TC(ib2,ib1).*bexp(ib1);
- M1(ib3,ib2) = TC(ib1,ib2).*bexp(ib2);
- M1(ib4,ib2) = TC(ib2,ib2).*bexp(ib2);
- M2([ib1,ib2],[ib1,ib2]) = TS([ib1,ib2],[ib1,ib2]);
- M2([ib3,ib4],[ib3,ib4]) = TC([ib3,ib4],[ib3,ib4]);
- M2(ib1,ib3) = TS(ib1,ib3).*bexp(ib1);
- M2(ib2,ib3) = TS(ib2,ib3).*bexp(ib1);
- M2(ib1,ib4) = TS(ib1,ib4).*bexp(ib2);
- M2(ib2,ib4) = TS(ib2,ib4).*bexp(ib2);
- M2(ib3,ib1) = TC(ib3,ib1).*bexp(ib1);
- M2(ib4,ib1) = TC(ib4,ib1).*bexp(ib1);
- M2(ib3,ib2) = TC(ib3,ib2).*bexp(ib2);
- M2(ib4,ib2) = TC(ib4,ib2).*bexp(ib2);
- % S-matrix
- SM = M2S(M1/M2);
- end
- %
- % END
- %
|