123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- %{
- Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.
- This file is part of GratingFMM.
- GratingFMM is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 2 of the License, or
- (at your option) any later version.
- GratingFMM is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GratingFMM. If not, see <https://www.gnu.org/licenses/>.
- %}
- %% description:
- % calculate a matrix of diffraction efficiencies in case of the
- % diffraction by 2D gratings being periodic in x and y dimensions
- %% input:
- % xno, yno: numbers of Fourier harmonics in x and y dimensions
- % V_inc: incident field amplitude matrix of size (2*no,2)
- % V_dif: diffracted field amplitude matrix of size (2*no,2)
- % kx0, ky0: incident plane wave wavevector x and y projections (Bloch wavevector projections)
- % kgx, kgy: wavelength-to-period ratios (grating vectors)
- % eps1, eps2: substrate and superstrate permittivities
- %% output:
- % V_eff: efficiency matrix of size (2*no,2) if the if the incident field has
- % propagating harmonics, otherwise (if the incident field is purely evanescent)
- % the matrix of partial powers carried by each diffraction order
- % first index of V_inc, V_dif, V_eff indicates diffraction harmonics
- % with indices 1:no being TE orders and no+1:2*no being TM orders
- % (0-th order index is ind_0 = (ceil(xno/2)-1)*yno+ceil(yno/2))
- % second index of V_inc, V_dif, V_eff indicates whether the diffraction orders
- % are in the substrate (V(:,1)) or in the superstrate (V(:,2))
- %% implementation
- function [V_eff] = fmmtd_efficiency(xno, yno, V_inc, V_dif, kx0, ky0, kgx, kgy, eps1, eps2)
- no = xno*yno;
- ib1 = 1:no; ib2 = no+1:2*no;
- [kz1, kz2] = fmmtd_kxyz(xno, yno, kx0, ky0, kgx, kgy, eps1, eps2);
- kz1 = transpose(kz1);
- kz2 = transpose(kz2);
- P_inc = sum( abs(V_inc(ib1,1).^2).*real(kz1) + abs(V_inc(ib1,2).^2).*real(kz2) ) ...
- + sum( abs(V_inc(ib2,1).^2).*real(kz1/eps1) + abs(V_inc(ib2,2).^2).*real(kz2/eps2) );
- V_eff = zeros(2*no,2);
- V_eff(ib1,1) = abs(V_dif(ib1,1).^2).*real(kz1);
- V_eff(ib1,2) = abs(V_dif(ib1,2).^2).*real(kz2);
- V_eff(ib2,1) = abs(V_dif(ib2,1).^2).*real(kz1/eps1);
- V_eff(ib2,2) = abs(V_dif(ib2,2).^2).*real(kz2/eps2);
- if abs(P_inc) > 1e-15
- V_eff = (1/P_inc)*V_eff;
- else
- V_eff = 0.5*V_eff;
- end
- end
- %
- % END
- %
|