from cmath import atan import numpy as np def open_file(path): """depends on the format of file we open""" freq, re, im = [], [], [] with open(path) as f: for line in f: temp = line[:-1].split(' ') for i in range(3): temp[i] = temp[i].replace(" ", "") freq.append(float(temp[0])) re.append(float(temp[1])) im.append(float(temp[2])) return freq, re, im def prepare_data(freq, re, im, fl=None): """the function takes raw data and gives vectors of eq (8)""" # finding fl from the point with smallest magnitude if argument not provided if fl is None: s = abs(np.array(re) + np.array(im)*1j) # frequency of loaded resonance fl = freq[list(abs(s)).index(min(abs(s)))] # frequency of unloaded resonance. f0 = fl # f0 = fl does not decrease the accuracy if Q >> 100 e1, e2, e3, gamma, p = [], [], [], [], [] for i in range(0, len(freq)): # filling vectors t = 2 * (freq[i] - fl) / f0 g = re[i] + im[i] * 1j e1.append(t) e2.append(1) e3.append(-t * g) gamma.append(g) p.append(1 / (1 + t ** 2 * (1 + re[i] ** 2 + im[i] ** 2))) data = np.array([e1, e2, e3, gamma, p], dtype=np.cdouble) return data, fl def solution(data): """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations. It is also gives matrix of equation""" c = [] # matrix of the system b = [] # matrix extension for i in range(3): c1 = np.vdot(data[i], data[4] * data[0]) c2 = np.vdot(data[i], data[4] * data[1]) c3 = np.vdot(data[i], data[4] * data[2]) c.append([c1, c2, c3]) b.append(np.vdot(data[i], data[4] * data[3])) c = np.array(c) a = np.linalg.solve(c, b) d = np.linalg.inv(c) # inverse of matrix c return a, c, d def q_factor(a): """calculation of result""" Ql = a[2].imag # Q-factor of loaded resonator diam = abs(a[1] - a[0] / a[2]) # diameter of circle k = 1 / (2 / diam - 1) Q = Ql * (1 + k) # Q-factor = result return Ql, diam, k, Q def recalculation_of_data(data, a, c, d, error=False): """preparation data for the next iteration of solving system""" # data = np.array([e1, e2, e3, gamma, p], dtype=complex), t = e1, 1 = e2 eps = np.array(a[0]*data[0] + a[1]*data[1] - a[2]*data[0]*data[3] - data[3], dtype=complex) # eps is eq(7) line's errors S2 = np.dot(abs(data[4]), abs(eps)*abs(eps)) # the weighted squared sum of errors sigma2A = [] # the square of standart deviation coefficients a temp = c[0][0]*d[0][0] + c[1][1]*d[1][1] + c[2][2]*d[2][2] for i in range(3): sigma2A.append(d[i][i] * S2 / temp) for i in range(len(data[4])): # recalculation of weight coefficients P data[4][i] = 1/(data[0][i]**2 * sigma2A[0] + sigma2A[1] + data[0][i]**2 * sigma2A[2] * (abs(data[3][i])**2)) if error: return abs(np.array(sigma2A)) else: return data def random_deviation(a, sigma2A, diam, k, Ql): """defines standart deviations of values""" sigmaQl = sigma2A[2]**0.5 sigmaDiam = (sigma2A[0]/(abs(a[2])**2) + sigma2A[1] + abs(a[0]/a[2]/a[2])**2 * sigma2A[2])**0.5 sigmaK = 2*sigmaDiam/((2-diam)**2) sigmaQ0 = ((1 + k)**2 * sigma2A[2] + Ql**2 * sigmaK**2)**0.5 return sigmaQ0, sigmaQl def apply(filename): freq, re, im = open_file(filename) data = prepare_data(freq, re, im) a, c, d = solution(data) for i in range(2, 10): data = recalculation_of_data(data, a, c, d) a, c, d = solution(data) Ql, diam, k, Q = q_factor(a) sigma2A = recalculation_of_data(data, a, c, d, error=True) sigmaQ0, sigmaQl = random_deviation(a, sigma2A, diam, k, Ql) print(f"Q = {Q} +- {sigmaQ0}, if i == {i}") def fl_fitting(freq, re, im): """providing an option to find actual fl""" data, fl = prepare_data(freq, re, im) a, c, d = solution(data) # Repeated curve fitting # 1.189 of Qfactor Matlab # fl2 = 0 # g_d=0 # g_c=0 for x in range(0, 3): g_c = (np.conj(a[2])*a[1]-a[0])/(np.conj(a[2])-a[2]) g_d = a[0]/a[2] g_2 = 2*g_c-g_d dt = (a[1]-g_2)/(g_2*a[2]-a[0]) fl2 = fl*(1 + np.real(dt)/2) data, fl = prepare_data(freq, re, im, fl2) a, c, d = solution(data) for i in range(2, 20): data = recalculation_of_data(data, a, c, d) a, c, d = solution(data) Ql, diam, k, Q = q_factor(a) sigma2A = recalculation_of_data(data, a, c, d, error=True) sigmaQ0, sigmaQl = random_deviation(a, sigma2A, diam, k, Ql) # taking into account coupling losses on page 69 of Qfactor Matlab # to get results similar to example program if False: phi1=np.arctan(np.double(g_d.imag/g_d.real)) # 1.239 phi2=np.arctan(np.double((g_c.imag-g_d.imag)/(g_c.real-g_d.real))) phi=-phi1+phi2 d_s=(1-np.abs(g_d)**2)/(1-np.abs(g_d)*np.cos(phi)) diam = abs(a[1] - a[0] / a[2]) qk=1/(d_s/diam-1) sigma2A = recalculation_of_data(data, a, c, d, error=True) sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql) Q = Ql * (1 + qk) # Q-factor = result print(f"Q0 = {Q} +- {sigmaQ0}") return Q,sigmaQ0, Ql, sigmaQl,a