import math import streamlit as st import matplotlib.pyplot as plt import numpy as np XLIM = [-1.1, 1.1] YLIM = [-1.1, 1.1] def round_up(x, n=7): if x == 0: return 0 deg = math.floor(math.log(abs(x), 10)) return (10 ** deg) * round(x / (10 ** deg), n - 1) def circle(ax, x, y, radius, color='#1946BA'): from matplotlib.patches import Ellipse drawn_circle = Ellipse((x, y), radius * 2, radius * 2, clip_on=False, zorder=2, linewidth=2, edgecolor=color, facecolor=(0, 0, 0, .0125)) ax.add_artist(drawn_circle) def plot_data(r, i, g): fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot() ax.set_xlim(XLIM) ax.set_ylim(YLIM) major_ticks = np.arange(-1.0, 1.1, 0.25) minor_ticks = np.arange(-1.1, 1.1, 0.05) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) ax.set_yticks(major_ticks) ax.set_yticks(minor_ticks, minor=True) ax.grid(which='major', color='grey', linewidth=1.5) ax.grid(which='minor', color='grey', linewidth=0.5, linestyle=':') plt.xlabel(r'$Re(\Gamma)$', color='gray', fontsize=16, fontname="Cambria") plt.ylabel('$Im(\Gamma)$', color='gray', fontsize=16, fontname="Cambria") plt.title('Smith chart', fontsize=24, fontname="Cambria") # circle approximation radius = abs(g[1] - g[0] / g[2]) / 2 x = ((g[1] + g[0] / g[2]) / 2).real y = ((g[1] + g[0] / g[2]) / 2).imag circle(ax, x, y, radius, color='#FF8400') # # unit circle circle(ax, 0, 0, 1) # # data ax.plot(r, i, '+', ms=10, mew=2, color='#1946BA') # st.pyplot(fig) def plot_ref_from_f(r, i, f): fig = plt.figure(figsize=(10, 10)) abs_S = list(math.sqrt(r[n] ** 2 + i[n] ** 2) for n in range(len(r))) xlim = [min(f) - abs(max(f) - min(f)) * 0.1, max(f) + abs(max(f) - min(f)) * 0.1] ylim = [min(abs_S) - abs(max(abs_S) - min(abs_S)) * 0.5, max(abs_S) + abs(max(abs_S) - min(abs_S)) * 0.5] ax = fig.add_subplot() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.grid(which='major', color='k', linewidth=1) ax.grid(which='minor', color='grey', linestyle=':', linewidth=0.5) plt.xlabel(r'$f,\; 1/c$', color='gray', fontsize=16, fontname="Cambria") plt.ylabel('$|\Gamma|$', color='gray', fontsize=16, fontname="Cambria") plt.title('Modulus of reflection coefficient from frequency', fontsize=24, fontname="Cambria") ax.plot(f, abs_S, '+', ms=10, mew=2, color='#1946BA') st.pyplot(fig) def run(calc_function): data = [] uploaded_file = st.file_uploader('Upload a csv') if uploaded_file is not None: data = uploaded_file.readlines() col1, col2 = st.columns(2) select_data_format = col1.selectbox('Choose data format from a list', ['Frequency, Re(S11), Im(S11)', 'Frequency, Re(Zin), Im(Zin)']) select_separator = col2.selectbox('Choose separator', ['" "', '","', '";"']) select_coupling_losses = st.checkbox('Apply corrections for coupling losses (lossy coupling)') def is_float(element) -> bool: try: float(element) val = float(element) if math.isnan(val) or math.isinf(val): raise ValueError return True except ValueError: return False def unpack_data(data): nonlocal select_separator nonlocal select_data_format f, r, i = [], [], [] if select_data_format == 'Frequency, Re(S11), Im(S11)': for x in range(len(data)): # print(select_separator) select_separator = select_separator.replace('\"', '') if select_separator == " ": tru = data[x].split() else: data[x] = data[x].replace(select_separator, ' ') tru = data[x].split() if len(tru) != 3: return f, r, i, 'Bad line in your file. №:' + str(x) a, b, c = (y for y in tru) if not ((is_float(a)) or (is_float(b)) or (is_float(c))): return f, r, i, 'Bad data. Your data isn\'t numerical type. Number of bad line:' + str(x) f.append(float(a)) # frequency r.append(float(b)) # Re of S11 i.append(float(c)) # Im of S11 else: return f, r, i, 'Bad data format' return f, r, i, 'very nice' validator_status = 'nice' # calculate circle_params = [] if len(data) > 0: f, r, i, validator_status = unpack_data(data) Q0, sigmaQ0, QL, sigmaQl, circle_params = calc_function(f, r, i) Q0 = round_up(Q0) sigmaQ0 = round_up(sigmaQ0) QL = round_up(QL) sigmaQl = round_up(sigmaQl) st.write("Cable attenuation") st.latex(r'Q_0 =' + f'{Q0} \pm {sigmaQ0}, ' + r'\;\;\varepsilon_{Q_0} =' + f'{round_up(sigmaQ0 / Q0)}') st.latex(r'Q_L =' + f'{QL} \pm {sigmaQl}, ' + r'\;\;\varepsilon_{Q_L} =' + f'{round_up(sigmaQl / QL)}') st.write("Status: " + validator_status) if len(data) > 0: f, r, i, validator_status = unpack_data(data) if validator_status == 'very nice': plot_data(r, i, circle_params) plot_ref_from_f(r, i, f)