import streamlit as st import matplotlib.pyplot as plt import numpy as np import sys ### don't do it this way! import os absolute_path = os.path.abspath(__file__) # print("Full path: " + absolute_path) # print("Directory Path: " + os.path.dirname(absolute_path)) # adding /backend to use its functions here sys.path.append("/".join(os.path.dirname(absolute_path).split('/')[:-1])) # print("/".join(os.path.dirname(absolute_path).split('/')[:-1])) from backend.calc import * def plot_data(r,i, g): # unit circle unit_circle_x = [] unit_circle_y = [] for x in np.arange(-1, 1, 0.01): unit_circle_x.append(x) unit_circle_y.append((1-x**2)**0.5) unit_circle_x.append(1) unit_circle_y.append(0) for x in np.arange(-1, 1, 0.01)[::-1]: unit_circle_x.append(x) unit_circle_y.append(-(1-x**2)**0.5) fig, ax = plt.subplots() ax.plot(unit_circle_x, unit_circle_y) # # data ax.plot(r, i, 'b+') # #cirlce approximation t=np.linspace(0,1,100) z = (g[0]*t+g[1])/(g[2]+1) ax.plot(z.real,z.imag) # ax.grid(True) ax.axis('square') ax.set_yticks(np.arange(-1, 1.2, 0.2)) ax.set_yticks(np.arange(-1, 1.2, 0.2)) st.pyplot(fig) # ../../resource/data/1_M450.MEA # with open("/".join(os.path.dirname(absolute_path).split('/')[:-2]) + "/resource/data/1_M450.MEA") as f: # row = f.readlines() # f, r, i = [], [], [] # for x in row: # a, b, c = (float(y) for y in x.split()) # f.append(a) # frequency # r.append(b) # Re of something # i.append(c) # Im of something # plot_data(r,i) ### move all that into to a function data = [] uploaded_file = st.file_uploader('Upload a csv') if uploaded_file is not None: data = uploaded_file.readlines() col1, col2 = st.columns(2) select_data_format = col1.selectbox('Choose data format from a list',['Frequency, Re(S11), Im(S11)','Frequency, Re(Zin), Im(Zin)']) select_separator = col2.selectbox('Choose separator',['","' ,'" "','";"']) def unpack_data(data): f, r, i = [], [], [] for x in data: a, b, c = (float(y) for y in x.split()) f.append(a) # frequency r.append(b) # Re of S11 i.append(c) # Im of S11 return f, r, i, 'very nice' validator_status = 'nice' # calculate circle_params=[] if len(data) > 0: f,r,i,validator_status = unpack_data(data) Q0,sigmaQ0,QL,sigmaQl, circle_params =fl_fitting(f,r,i) st.write("Cable attenuation") st.write(f"Q0 = {Q0} +- {sigmaQ0}, epsilon Q0 ={sigmaQ0/Q0}") st.write(f"QL = {QL} +- {sigmaQl}, epsilon QL ={sigmaQl/QL}") st.write("Status: " +validator_status) if len(data) > 0: f,r,i,validator_status = unpack_data(data) plot_data(r,i,circle_params)