import math from time import perf_counter import streamlit as st import matplotlib.pyplot as plt import numpy as np import sigfig from streamlit_ace import st_ace from .show_echart import plot_interact_abs_from_f from .data_parsing_utils import is_float, read_data, check_line_comments, count_columns, prepare_snp def circle(ax, x, y, radius, color='#1946BA'): from matplotlib.patches import Ellipse drawn_circle = Ellipse((x, y), radius * 2, radius * 2, clip_on=True, zorder=2, linewidth=2, edgecolor=color, facecolor=(0, 0, 0, .0)) ax.add_artist(drawn_circle) def plot_smith(r, i, g, r_cut, i_cut): from matplotlib.image import AxesImage show_excluded_points = True show_Abs_S_scale = False show_Re_Z_scale = False show_Im_Z_scale = False show_grid = True with st.expander("Smith chart options"): show_excluded_points = st.checkbox("Show excluded points", value=show_excluded_points) show_grid = st.checkbox("Show grid", value=show_grid) show_Abs_S_scale = st.checkbox("Show |S| gridlines", value=show_Abs_S_scale) show_Re_Z_scale = st.checkbox("Show Re(Z) gridlines", value=show_Re_Z_scale) show_Im_Z_scale = st.checkbox("Show Im(Z) gridlines", value=show_Im_Z_scale) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot() # major_ticks = np.arange(-1.0, 1.1, 0.25) minor_ticks = np.arange(-1.1, 1.1, 0.05) # ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) # ax.set_yticks(major_ticks) ax.set_yticks(minor_ticks, minor=True) ax.grid(which='major', color='grey', linewidth=1.5) ax.grid(which='minor', color='grey', linewidth=0.5, linestyle=':') plt.xlabel('$Re(S)$', color='gray', fontsize=16, fontname="Cambria") plt.ylabel('$Im(S)$', color='gray', fontsize=16, fontname="Cambria") plt.title('Smith chart', fontsize=24, fontname="Cambria") # unit circle circle(ax, 0, 0, 1) if not show_grid: ax.axis('off') background_img_x = -1.981 background_img_y = -1.949 background_img_box = [ background_img_x, background_img_x + 3.87, background_img_y, background_img_y + 3.87 ] if show_Abs_S_scale: # imshow is extremely slow # TODO draw primitives in place background = plt.imread("./source/frontend/images/s.png") background = ax.imshow(background, extent=background_img_box, interpolation= 'none') if show_Re_Z_scale: background = plt.imread("./source/frontend/images/re(z).png") background = ax.imshow(background, extent=background_img_box, interpolation= 'none') if show_Im_Z_scale: background = plt.imread("./source/frontend/images/im(z).png") background = ax.imshow(background, extent=background_img_box, interpolation= 'none') # input data points if show_excluded_points: ax.plot(r, i, '+', ms=8, mew=2, color='#b6c7f4') # choosen data points ax.plot(r_cut, i_cut, '+', ms=8, mew=2, color='#1946BA') # circle approximation by calc radius = abs(g[1] - g[0] / g[2]) / 2 x = ((g[1] + g[0] / g[2]) / 2).real y = ((g[1] + g[0] / g[2]) / 2).imag circle(ax, x, y, radius, color='#FF8400') XLIM = [-1.3, 1.3] YLIM = [-1.3, 1.3] ax.set_xlim(XLIM) ax.set_ylim(YLIM) st.pyplot(fig) # plot abs(S) vs f chart with pyplot def plot_abs_vs_f(f, r, i, fitted_mag_s): fig = plt.figure(figsize=(10, 10)) s = np.abs(np.array(r) + 1j * np.array(i)) if st.session_state.legendselection == '|S| (dB)': m = np.min(np.where(s==0, np.inf, s)) s = list(20*np.where(s==0, np.log10(m), np.log10(s))) m = np.min(np.where(s==0, np.inf, fitted_mag_s)) fitted_mag_s = list(20*np.where(s==0, np.log10(m), np.log10(fitted_mag_s))) s = list(s) min_f = min(f) max_f = max(f) xlim = [ min_f - abs(max_f - min_f) * 0.1, max_f + abs(max_f - min_f) * 0.1 ] min_s = min(s) max_s = max(s) print(min_s,max_s) ylim = [ min_s - abs(max_s - min_s) * 0.5, max_s + abs(max_s - min_s) * 0.5 ] ax = fig.add_subplot() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.grid(which='major', color='k', linewidth=1) ax.grid(which='minor', color='grey', linestyle=':', linewidth=0.5) plt.xlabel(r'$f,\; 1/c$', color='gray', fontsize=16, fontname="Cambria") if st.session_state.legendselection == '|S| (dB)': plt.ylabel('$|S|$ (dB)', color='gray', fontsize=16, fontname="Cambria") plt.title('|S| (dB) vs frequency', fontsize=24, fontname="Cambria") else: plt.ylabel('$|S|$', color='gray', fontsize=16, fontname="Cambria") plt.title('|S| vs frequency', fontsize=24, fontname="Cambria") ax.plot(f, s, '+', ms=8, mew=2, color='#1946BA') ax.plot(f, fitted_mag_s, '-', linewidth=3, color='#FF8400') st.pyplot(fig) def run(calc_function): # for Touchstone .snp format def parse_heading(data): nonlocal data_format_snp if data_format_snp: for x in range(len(data)): if data[x].lstrip()[0] == '#': line = data[x].split() if len(line) == 6: repr_map = {"ri": 0, "ma": 1, "db": 2} para_map = {"s": 0, "z": 1} hz_map = { "ghz": 10**9, "mhz": 10**6, "khz": 10**3, "hz": 1 } hz, measurement_parameter, data_representation, _r, ref_resistance = ( x.lower() for x in line[1:]) try: return hz_map[hz], para_map[ measurement_parameter], repr_map[ data_representation], int( float(ref_resistance)) except: break break return 1, 0, 0, 50 def unpack_data(data, first_column, column_count, ref_resistance, ace_preview_markers): nonlocal select_measurement_parameter nonlocal select_data_representation f, r, i = [], [], [] return_status = 'data parsed' for x in range(len(data)): line = check_line_comments(data[x]) if line is None: continue line = line.split() if column_count != len(line): return_status = "Wrong number of parameters on line № " + str( x) break # 1: process according to data_placement a, b, c = None, None, None try: a = line[0] b = line[first_column] c = line[first_column + 1] except: return_status = 'Can\'t parse line №: ' + \ str(x) + ',\n not enough arguments' break if not ((is_float(a)) or (is_float(b)) or (is_float(c))): return_status = 'Wrong data type, expected number. Error on line: ' + \ str(x) break # mark as processed # for y in (a,b,c): # ace_preview_markers.append( # {"startRow": x,"startCol": 0, # "endRow": x,"endCol": data[x].find(y)+len(y), # "className": "ace_stack","type": "text"}) a, b, c = (float(x) for x in (a, b, c)) f.append(a) # frequency # 2: process according to data_representation if select_data_representation == 'Frequency, real, imaginary': # std format r.append(b) # Re i.append(c) # Im elif select_data_representation == 'Frequency, magnitude, angle': r.append(b * np.cos(np.deg2rad(c))) i.append(b * np.sin(np.deg2rad(c))) elif select_data_representation == 'Frequency, db, angle': b = 10**(b / 20) r.append(b * np.cos(np.deg2rad(c))) i.append(b * np.sin(np.deg2rad(c))) else: return_status = 'Wrong data format' break # 3: process according to measurement_parameter if select_measurement_parameter == 'Z': # normalization r[-1] = r[-1] / ref_resistance i[-1] = i[-1] / ref_resistance # translate to S try: # center_x + 1j*center_y, radius p1, r1 = r[-1] / (1 + r[-1]) + 0j, 1 / (1 + r[-1]) #real p2, r2 = 1 + 1j * (1 / i[-1]), 1 / i[-1] #imag d = abs(p2 - p1) q = (r1**2 - r2**2 + d**2) / (2 * d) h = (r1**2 - q**2)**0.5 p = p1 + q * (p2 - p1) / d intersect = [(p.real + h * (p2.imag - p1.imag) / d, p.imag - h * (p2.real - p1.real) / d), (p.real - h * (p2.imag - p1.imag) / d, p.imag + h * (p2.real - p1.real) / d)] intersect = [x + 1j * y for x, y in intersect] intersect_shift = [p - (1 + 0j) for p in intersect] intersect_shift = abs(np.array(intersect_shift)) p = intersect[0] if intersect_shift[0] < intersect_shift[1]: p = intersect[1] r[-1] = p.real i[-1] = p.imag except: r.pop() i.pop() f.pop() if return_status == 'data parsed': if len(f) < 3 or len(f) != len(r) or len(f) != len(i): return_status = 'Choosen data range is too small, add more points' elif max(abs(np.array(r) + 1j * np.array(i))) > 2: return_status = 'Your data points have an abnormality:\ they are too far outside the unit cirlce.\ Make sure the format is correct' return f, r, i, return_status # info with st.expander("Info"): # streamlit.markdown does not support footnotes try: with open('./source/frontend/info.md') as f: st.markdown(f.read()) except: st.write('Wrong start directory, see readme') # file upload button uploaded_file = st.file_uploader( 'Upload a file from your vector analizer. \ Make sure the file format is .snp or it has a similar inner structure.' ) # check .snp data_format_snp = False data_format_snp_number = 0 if uploaded_file is None: st.write("DEMO: ") # display DEMO data_format_snp = True try: with open('./resource/data/8_default_demo.s1p') as f: data = f.readlines() except: # 'streamlit run' call in the wrong directory. Display smaller demo: data = [ '# Hz S MA R 50\n\ 11415403125 0.37010744 92.47802\n\ 11416090625 0.33831283 92.906929\n\ 11416778125 0.3069371 94.03318' ] else: data = uploaded_file.readlines() if uploaded_file.name[-4:-2] == '.s' and uploaded_file.name[-1] == 'p': data_format_snp = True data_format_snp_number = int(uploaded_file.name[-2]) validator_status = '...' ace_preview_markers = [] column_count = 0 # data loaded circle_params = [] if len(data) > 0: validator_status = read_data(data) if validator_status == 'data read, but not parsed': hz, select_measurement_parameter, select_data_representation, input_ref_resistance = parse_heading( data) col1, col2 = st.columns([1, 2]) ace_text_value = ''.join(data).strip() with col1.expander("Processing options"): select_measurement_parameter = st.selectbox( 'Measurement parameter', ['S', 'Z'], select_measurement_parameter) select_data_representation = st.selectbox( 'Data representation', [ 'Frequency, real, imaginary', 'Frequency, magnitude, angle', 'Frequency, db, angle' ], select_data_representation) if select_measurement_parameter == 'Z': input_ref_resistance = st.number_input( "Reference resistance:", min_value=0, value=input_ref_resistance) if not data_format_snp: input_hz = st.selectbox('Unit of frequency', ['Hz', 'KHz', 'MHz', 'GHz'], 0) hz_map = { "ghz": 10**9, "mhz": 10**6, "khz": 10**3, "hz": 1 } hz = hz_map[input_hz.lower()] input_start_line = int( st.number_input("First line for processing:", min_value=1, max_value=len(data))) input_end_line = int( st.number_input("Last line for processing:", min_value=1, max_value=len(data), value=len(data))) data = data[input_start_line - 1:input_end_line] # Ace editor to show choosen data columns and rows with col2.expander("File preview"): # So little 'official' functionality in libs and lack of documentation # therefore beware: css hacks # yellow ~ ace_step # light yellow ~ ace_highlight-marker # green ~ ace_stack # red ~ ace_error-marker # no more good colors included in streamlit_ace for marking # st.markdown('''''', unsafe_allow_html=True) # markdown injection does not seems to work, # since ace is in a different .html accessible via iframe # markers format: #[{"startRow": 2,"startCol": 0,"endRow": 2,"endCol": 3,"className": "ace_error-marker","type": "text"}] # add marking for choosen data lines? # todo or not todo? ace_preview_markers.append({ "startRow": input_start_line - 1, "startCol": 0, "endRow": input_end_line, "endCol": 0, "className": "ace_highlight-marker", "type": "text" }) st_ace(value=ace_text_value, readonly=True, auto_update=True, placeholder="Your file is empty", markers=ace_preview_markers, height="300px") if data_format_snp and data_format_snp_number >= 3: data, validator_status = prepare_snp(data, data_format_snp_number) if validator_status == "data read, but not parsed": column_count, validator_status = count_columns(data) f, r, i = [], [], [] if validator_status == "data parsed": input_ports_pair = 1 if column_count > 3: pair_count = (column_count - 1) // 2 input_ports_pair = st.number_input( "Choose pair of ports with network parameters:", min_value=1, max_value=pair_count, value=1) input_ports_pair_id = input_ports_pair - 1 ports_count = round(pair_count**0.5) st.write('Choosen ports: ' + select_measurement_parameter + str(input_ports_pair_id // ports_count + 1) + str(input_ports_pair_id % ports_count + 1)) f, r, i, validator_status = unpack_data(data, (input_ports_pair - 1) * 2 + 1, column_count, input_ref_resistance, ace_preview_markers) f = [x * hz for x in f] # to hz st.write("Use range slider to choose best suitable data interval") # make accessible a specific range of numerical data choosen with interactive plot # line id, line id interval_start, interval_end = plot_interact_abs_from_f(f,r,i) # plot_interact_abs_from_f( f, r, i, interval_range) f_cut, r_cut, i_cut = [], [], [] if validator_status == "data parsed": f_cut, r_cut, i_cut = (x[interval_start:interval_end] for x in (f, r, i)) with st.expander("Selected data interval as .s1p"): st_ace(value="# Hz S RI R 50\n" + ''.join(f'{f_cut[x]} {r_cut[x]} {i_cut[x]}\n' for x in range(len(f_cut))), readonly=True, auto_update=True, placeholder="Selection is empty", height="150px") if len(f_cut) < 3: validator_status = "Choosen interval is too small, add more points" st.write("Status: " + validator_status) if validator_status == "data parsed": col1, col2 = st.columns(2) check_coupling_loss = col1.checkbox( 'Apply correction for coupling losses') if check_coupling_loss: col1.write("Option: Lossy coupling") else: col1.write("Option: Cable attenuation") select_autoformat = col2.checkbox("Autoformat output", value=True) precision = '0.0f' if not select_autoformat: precision = col2.slider("Precision", min_value=0, max_value=7, value=4) precision = '0.' + str(precision) + 'f' Q0, sigmaQ0, QL, sigmaQL, k, ks, circle_params, fl, fitted_mag_s = calc_function( f_cut, r_cut, i_cut, check_coupling_loss) if Q0 <= 0 or QL <= 0: st.write("Negative Q detected, fitting may be inaccurate!") def show_result_in_latex(name, value, uncertainty=None): nonlocal select_autoformat if uncertainty is not None: if select_autoformat: st.latex( name + ' =' + f'{sigfig.round(value, uncertainty=uncertainty, style="PDG")}, ' + r'\;\;\varepsilon_{' + name + '} =' + f'{sigfig.round(uncertainty / value, sigfigs=1, style="PDG")}' ) else: st.latex(name + ' =' + f'{format(value, precision)} \pm ' + f'{format(uncertainty, precision)}, ' + r'\;\;\varepsilon_{' + name + '} =' + f'{format(uncertainty / value, precision)}') else: if select_autoformat: st.latex(name + ' =' + f'{sigfig.round(value, sigfigs=5, style="PDG")}') else: st.latex(name + ' =' + f'{format(value, precision)}') show_result_in_latex('Q_0', Q0, sigmaQ0) show_result_in_latex('Q_L', QL, sigmaQL) show_result_in_latex(r'\kappa', k) if check_coupling_loss: show_result_in_latex(r'\kappa_s', ks) st.latex('f_L =' + f'{format(fl, precision)}' + r'\text{ }Hz') with st.expander("Show static abs(S) plot"): plot_abs_vs_f(f_cut, r_cut, i_cut, fitted_mag_s) t1= perf_counter() plot_smith(r, i, circle_params, r_cut, i_cut) print(perf_counter()-t1)