from streamlit_ace import st_ace from streamlit_echarts import st_echarts import math import streamlit as st import matplotlib.pyplot as plt import numpy as np XLIM = [-1.1, 1.1] YLIM = [-1.1, 1.1] def circle(ax, x, y, radius, color='#1946BA'): from matplotlib.patches import Ellipse drawn_circle = Ellipse((x, y), radius * 2, radius * 2, clip_on=False, zorder=2, linewidth=2, edgecolor=color, facecolor=(0, 0, 0, .0125)) ax.add_artist(drawn_circle) def plot_data(r, i, g): fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot() major_ticks = np.arange(-1.0, 1.1, 0.25) minor_ticks = np.arange(-1.1, 1.1, 0.05) ax.set_xticks(major_ticks) ax.set_xticks(minor_ticks, minor=True) ax.set_yticks(major_ticks) ax.set_yticks(minor_ticks, minor=True) ax.grid(which='major', color='grey', linewidth=1.5) ax.grid(which='minor', color='grey', linewidth=0.5, linestyle=':') plt.xlabel(r'$Re(\Gamma)$', color='gray', fontsize=16, fontname="Cambria") plt.ylabel('$Im(\Gamma)$', color='gray', fontsize=16, fontname="Cambria") plt.title('Smith chart', fontsize=24, fontname="Cambria") # circle approximation radius = abs(g[1] - g[0] / g[2]) / 2 x = ((g[1] + g[0] / g[2]) / 2).real y = ((g[1] + g[0] / g[2]) / 2).imag circle(ax, x, y, radius, color='#FF8400') # # unit circle circle(ax, 0, 0, 1) # # data ax.plot(r, i, '+', ms=10, mew=2, color='#1946BA') # ax.set_xlim(XLIM) ax.set_ylim(YLIM) try: st.pyplot(fig) except: st.write("Plot size is too big, check your input") interval_range = (0, 100) interval_start, interval_end = 0, 0 def plot_interact_abs_from_f(f, r, i): abs_S = list((r[n] ** 2 + i[n] ** 2)**0.5 for n in range(len(r))) global interval_range, interval_start, interval_end # echarts for datazoom https://discuss.streamlit.io/t/streamlit-echarts/3655 # datazoom https://echarts.apache.org/examples/en/editor.html?c=line-draggable&lang=ts # axis pointer values https://echarts.apache.org/en/option.html#axisPointer options = { "xAxis": { "type": "category", "data": f, "name": "Hz", "nameTextStyle": {"fontSize": 16}, "axisLabel": {"fontSize": 16} }, "yAxis": { "type": "value", "name": "abs(S)", "nameTextStyle": {"fontSize": 16}, "axisLabel": {"fontSize": 16} }, "series": [{"data": abs_S, "type": "line", "name": "abs(S)"}], "height": 300, "dataZoom": [{"type": "slider", "start": 0, "end": 100, "height": 100, "bottom": 10}], "tooltip": { "trigger": "axis", "axisPointer": { "type": 'cross', # "label": { # "show":"true", # "formatter": JsCode( # "function(info){return info.value;};" # ).js_code # } } }, "toolbox": { "feature": { # "dataView": { "show": "true", "readOnly": "true" }, "restore": {"show": "true"}, } }, } events = { "dataZoom": "function(params) { return [params.start, params.end] }", } interval_range = st_echarts( options=options, events=events, height="500px", key="render_basic_bar_events" ) if interval_range is None: interval_range = (0, 100) n = len(f) interval_start, interval_end = ( int(n*interval_range[id]*0.01) for id in (0, 1)) def plot_ref_from_f(f, r, i): fig = plt.figure(figsize=(10, 10)) abs_S = list((r[n] ** 2 + i[n] ** 2)**0.5 for n in range(len(r))) xlim = [min(f) - abs(max(f) - min(f)) * 0.1, max(f) + abs(max(f) - min(f)) * 0.1] ylim = [min(abs_S) - abs(max(abs_S) - min(abs_S)) * 0.5, max(abs_S) + abs(max(abs_S) - min(abs_S)) * 0.5] ax = fig.add_subplot() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.grid(which='major', color='k', linewidth=1) ax.grid(which='minor', color='grey', linestyle=':', linewidth=0.5) plt.xlabel(r'$f,\; 1/c$', color='gray', fontsize=16, fontname="Cambria") plt.ylabel('$|S|$', color='gray', fontsize=16, fontname="Cambria") plt.title('Absolute value of reflection coefficient from frequency', fontsize=24, fontname="Cambria") ax.plot(f, abs_S, '+', ms=10, mew=2, color='#1946BA') st.pyplot(fig) def run(calc_function): def is_float(element) -> bool: try: float(element) val = float(element) if math.isnan(val) or math.isinf(val): raise ValueError return True except ValueError: return False # to utf-8 def read_data(data): for x in range(len(data)): if type(data[x]) == bytes: try: data[x] = data[x].decode('utf-8-sig', 'ignore') except: return 'Not an utf-8-sig line №: ' + str(x) return 'data read: success' # for Touchstone .snp format def parse_heading(data): nonlocal data_format_snp if data_format_snp: for x in range(len(data)): if data[x][0]=='#': line = data[x].split() if len(line)== 6: repr_map = {"RI":0,"MA":1, "DB":2} para_map = {"S":0,"Z":1} hz_map = {"GHz":10**9,"MHz":10**6,"KHz":10**3,"Hz":1} hz,measurement_parameter,data_representation,_r,ref_resistance=line[1:] try: return hz_map[hz], para_map[measurement_parameter], repr_map[data_representation], ref_resistance except: break break data_format_snp = False return 1, 0, 0, 50 def unpack_data(data, input_start_line, input_end_line, hz): nonlocal select_measurement_parameter nonlocal select_data_representation f, r, i = [], [], [] for x in range(input_start_line-1, input_end_line): if len(data[x])<2 or data[x][0]== '!' or data[x][0]=='#' or data[x][0]=='%' or data[x][0]=='/': # first is a comment line according to .snp documentation, # others detects comments in various languages continue data[x] = data[x].replace(';', ' ').replace(',', ' ') line = data[x].split() # always at least 3 values for single data point if len(line) < 3: return f, r, i, 'Can\'t parse line №: ' + str(x) + ',\n not enough arguments (less than 3)' if select_measurement_parameter == 'S': a, b, c = (y for y in line) if not ((is_float(a)) or (is_float(b)) or (is_float(c))): return f, r, i, 'Wrong data type, expected number. Error on line: ' + str(x) else: return f, r, i, 'Wrong data format' f.append(float(a)*hz) # frequency r.append(float(b)) # Re of S i.append(float(c)) # Im of S return f, r, i, 'data parsed' # make accessible specific range of numerical data choosen with interactive plot global interval_range, interval_start, interval_end data = [] data_format_snp = False uploaded_file = st.file_uploader('Upload a csv') if uploaded_file is not None: data = uploaded_file.readlines() if uploaded_file.name[-4:-2]=='.s' and uploaded_file.name[-1]== 'p': data_format_snp = True validator_status = '...' ace_preview_markers = [] # data loaded circle_params = [] if len(data) > 0: validator_status = read_data(data) if validator_status == 'data read: success': hz, select_measurement_parameter, select_data_representation, input_ref_resistance=parse_heading(data) col1, col2 = st.columns(2) select_measurement_parameter = col1.selectbox('Measurement parameter', ['S', 'Z'], select_measurement_parameter) select_data_representation = col1.selectbox('Data representation', ['Frequency, real, imaginary', 'Frequency, magnitude, angle'], select_data_representation) if select_measurement_parameter=='Z': input_ref_resistance = col1.number_input( "Reference resistance:", min_value=0, value=input_ref_resistance) input_start_line = col1.number_input( "First line of data:", min_value=1, max_value=len(data)) input_end_line = col1.number_input( "Last line of data:", min_value=1, max_value=len(data), value=len(data)) f, r, i, validator_status = unpack_data(data, input_start_line, input_end_line, hz) # Ace editor to show choosen data columns and rows with col2.expander("File preview"): # web development is fundamentally imposible without such hacks # if we have so little 'official' functionality in libs and this lack of documentation # yellow ~ ace_step # light yellow ~ ace_highlight-marker # green ~ ace_stack # red ~ ace_error-marker # st.markdown('''''', unsafe_allow_html=True) # markdown injection does not work, since ace is in a different .html accessible via iframe # markers format: #[{"startRow": 2,"startCol": 0,"endRow": 2,"endCol": 3,"className": "ace_error-marker","type": "text"}] ace_preview_markers.append( {"startRow": input_start_line,"startCol": 0, "endRow": input_end_line+1,"endCol": 0,"className": "ace_highlight-marker","type": "text"}) text_value = "Frequency,Hz | Re(S11) | Im(S11)\n" + \ ''.join(data).strip() st_ace(value=text_value, readonly=True, auto_update=True, placeholder="Your data is empty", markers=ace_preview_markers, height="300px") st.write("Use range slider to choose best suitable data interval") plot_interact_abs_from_f(f, r, i) select_coupling_losses = st.checkbox( 'Apply corrections for coupling losses (lossy coupling)') f_cut, r_cut, i_cut = (x[interval_start:interval_end] for x in (f, r, i)) if validator_status == 'data parsed': Q0, sigmaQ0, QL, sigmaQl, circle_params = calc_function( f_cut, r_cut, i_cut, select_coupling_losses) # Q0 = round_up(Q0) # sigmaQ0 = round_up(sigmaQ0) # QL = round_up(QL) # sigmaQl = round_up(sigmaQl) if select_coupling_losses: st.write("Lossy coupling") else: st.write("Cable attenuation") out_precision = '0.7f' st.latex(r'Q_0 =' + f'{format(Q0, out_precision)} \pm {format(sigmaQ0, out_precision)}, ' + r'\;\;\varepsilon_{Q_0} =' + f'{format(sigmaQ0 / Q0, out_precision)}') st.latex(r'Q_L =' + f'{format(QL, out_precision)} \pm {format(sigmaQl, out_precision)}, ' + r'\;\;\varepsilon_{Q_L} =' + f'{format(sigmaQl / QL, out_precision)}') st.write("Status: " + validator_status) if len(data) > 0 and validator_status == 'data parsed': with st.expander("Show static abs(S) plot"): plot_ref_from_f(f_cut, r_cut, i_cut) plot_data(r_cut, i_cut, circle_params)