# from cmath import atan import numpy as np def open_file(path): """depends on the format of file we open""" freq, re, im = [], [], [] with open(path) as f: for line in f: temp = line[:-1].split(' ') for i in range(3): temp[i] = temp[i].replace(" ", "") freq.append(float(temp[0])) re.append(float(temp[1])) im.append(float(temp[2])) return freq, re, im def prepare_data(freq, re, im, fl=None): """the function takes raw data and gives vectors of eq (8)""" # finding fl from the point with smallest magnitude if argument not provided if fl is None: s = abs(np.array(re) + np.array(im) * 1j) # frequency of loaded resonance fl = freq[list(abs(s)).index(min(abs(s)))] # frequency of unloaded resonance. f0 = fl # f0 = fl does not decrease the accuracy if Q >> 100 e1, e2, e3, gamma, p = [], [], [], [], [] for i in range(0, len(freq)): # filling vectors t = 2 * (freq[i] - fl) / f0 g = re[i] + im[i] * 1j e1.append(t) e2.append(1) e3.append(-t * g) gamma.append(g) p.append(1 / (1 + t ** 2 * (1 + re[i] ** 2 + im[i] ** 2))) data = np.array([e1, e2, e3, gamma, p], dtype=np.cdouble) return data, fl def solution(data): """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations. It is also gives matrix of equation""" c = [] # matrix of the system b = [] # matrix extension for i in range(3): c1 = np.vdot(data[i], data[4] * data[0]) c2 = np.vdot(data[i], data[4] * data[1]) c3 = np.vdot(data[i], data[4] * data[2]) c.append([c1, c2, c3]) b.append(np.vdot(data[i], data[4] * data[3])) c = np.array(c) a = np.linalg.solve(c, b) d = np.linalg.inv(c) # inverse of matrix c return a, c, d def q_factor(a): """calculation of result""" Ql = a[2].imag # Q-factor of loaded resonator diam = abs(a[1] - a[0] / a[2]) # diameter of circle k = 1 / (2 / diam - 1) Q = Ql * (1 + k) # Q-factor = result return Ql, diam, k, Q def recalculation_of_data(data, a, c, d, error=False): """preparation data for the next iteration of solving system""" # data = np.array([e1, e2, e3, gamma, p], dtype=complex), t = e1, 1 = e2 eps = np.array(a[0] * data[0] + a[1] * data[1] - a[2] * data[0] * data[3] - data[3], dtype=complex) # eps is eq(7) line's errors S2 = np.dot(abs(data[4]), abs(eps) * abs(eps)) # the weighted squared sum of errors sigma2A = [] # the square of standart deviation coefficients a temp = c[0][0] * d[0][0] + c[1][1] * d[1][1] + c[2][2] * d[2][2] for i in range(3): sigma2A.append(d[i][i] * S2 / temp) for i in range(len(data[4])): # recalculation of weight coefficients P data[4][i] = 1 / ( data[0][i] ** 2 * sigma2A[0] + sigma2A[1] + data[0][i] ** 2 * sigma2A[2] * (abs(data[3][i]) ** 2)) if error: return abs(np.array(sigma2A)) else: return data def recalculating(data, a, c, d, n, printing=False): for i in range(2, n): data = recalculation_of_data(data, a, c, d) a, c, d = solution(data) Ql, diam, k, Q = q_factor(a) sigma2A = recalculation_of_data(data, a, c, d, error=True) sigmaQ0, sigmaQl = random_deviation(a, sigma2A, diam, k, Ql) if printing: print(f"Q = {Q} +- {sigmaQ0}, if i == {i}") return a, c, d, Ql, diam, k, Q, sigma2A, sigmaQ0, sigmaQl, data def random_deviation(a, sigma2A, diam, k, Ql): """defines standart deviations of values""" sigmaQl = sigma2A[2] ** 0.5 sigmaDiam = (sigma2A[0] / (abs(a[2]) ** 2) + sigma2A[1] + abs(a[0] / a[2] / a[2]) ** 2 * sigma2A[2]) ** 0.5 sigmaK = 2 * sigmaDiam / ((2 - diam) ** 2) sigmaQ0 = ((1 + k) ** 2 * sigma2A[2] + Ql ** 2 * sigmaK ** 2) ** 0.5 return sigmaQ0, sigmaQl def apply(filename): freq, re, im = open_file(filename) data = prepare_data(freq, re, im) a, c, d = solution(data) a, c, d, Ql, diam, k, Q, sigma2A, sigmaQ0, sigmaQl, data = recalculating(data, a, c, d, 10, printing=True) def fl_fitting(freq, re, im): """providing an option to find actual fl""" data, fl = prepare_data(freq, re, im) a, c, d = solution(data) Ql, Q, sigmaQ0, sigmaQl = None, None, None, None # Repeated curve fitting # 1.189 of Qfactor Matlab # fl2 = 0 # g_d=0 # g_c=0 for x in range(0, 3): g_c = (np.conj(a[2]) * a[1] - a[0]) / (np.conj(a[2]) - a[2]) g_d = a[0] / a[2] g_2 = 2 * g_c - g_d dt = (a[1] - g_2) / (g_2 * a[2] - a[0]) fl2 = fl * (1 + np.real(dt) / 2) data, fl = prepare_data(freq, re, im, fl2) a, c, d = solution(data) a, c, d, Ql, diam, k, Q, sigma2A, sigmaQ0, sigmaQl, data = recalculating(data, a, c, d, 20) # taking into account coupling losses on page 69 of Qfactor Matlab # to get results similar to example program # if False: # phi1=np.arctan(np.double(g_d.imag/g_d.real)) # 1.239 # phi2=np.arctan(np.double((g_c.imag-g_d.imag)/(g_c.real-g_d.real))) # phi=-phi1+phi2 # d_s=(1-np.abs(g_d)**2)/(1-np.abs(g_d)*np.cos(phi)) # diam = abs(a[1] - a[0] / a[2]) # qk=1/(d_s/diam-1) # # sigma2A = recalculation_of_data(data, a, c, d, error=True) # sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql) # Q = Ql * (1 + qk) # Q-factor = result # print(f"Q0 = {Q} +- {sigmaQ0}") return Q, sigmaQ0, Ql, sigmaQl, a