|
@@ -0,0 +1,214 @@
|
|
|
+import pypulseq as puls
|
|
|
+import numpy as np
|
|
|
+import json
|
|
|
+from matplotlib import pyplot as plt
|
|
|
+
|
|
|
+seq_file = "seq_storage/SE_rfdeath_5000.seq"
|
|
|
+seq_input = puls.Sequence()
|
|
|
+seq_input.read(file_path=seq_file)
|
|
|
+seq_output_dict = seq_input.waveforms_export(time_range=(0, 3))
|
|
|
+
|
|
|
+
|
|
|
+def output_seq(dict):
|
|
|
+ loc_t_adc = dict['t_adc']
|
|
|
+ loc_t_rf = dict['t_rf']
|
|
|
+ loc_t_rf_centers = dict['t_rf_centers']
|
|
|
+ loc_t_gx = dict['t_gx']
|
|
|
+ loc_t_gy = dict['t_gy']
|
|
|
+ loc_t_gz = dict['t_gz']
|
|
|
+ loc_adc = dict['adc']
|
|
|
+ loc_rf = dict['rf']
|
|
|
+ loc_rf_centers = dict['rf_centers']
|
|
|
+ loc_gx = dict['gx']
|
|
|
+ loc_gy = dict['gy']
|
|
|
+ loc_gz = dict['gz']
|
|
|
+ with open('data_output_seq/t_adc.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_t_adc))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/t_rf.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_t_rf))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/t_rf_centers.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_t_rf_centers))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/t_gx.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_t_gx))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/t_gy.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_t_gy))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/t_gz.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_t_gz))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/adc.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_adc))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/rf.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_rf))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/rf_centers.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_rf_centers))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/gx.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_gx))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/gy.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_gy))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output_seq/gz.txt', 'w') as f:
|
|
|
+ data = str(tuple(loc_gz))
|
|
|
+ f.write(data)
|
|
|
+
|
|
|
+
|
|
|
+output_seq(seq_output_dict)
|
|
|
+# added type check in Sequence.block, read does not make an empty variable with a type
|
|
|
+# is there the other way to do it?
|
|
|
+# print(seq_output_dict['gx'])
|
|
|
+# Engage what exactly every array means
|
|
|
+# print(seq_input.waveforms_and_times())
|
|
|
+# plt.plot()
|
|
|
+# plt.show()
|
|
|
+
|
|
|
+# print(seq_output_dict)
|
|
|
+# t_adc t_rf t_rf_centers t_gx t_gy t_gz adc rf rf_centers gx gy gz
|
|
|
+# seq_input.plot()
|
|
|
+
|
|
|
+# plt.plot(seq_output_dict['t_rf'], seq_output_dict['rf'])
|
|
|
+# plt.show()
|
|
|
+# plt.plot(seq_output_dict['t_adc'], seq_output_dict['adc'])
|
|
|
+# plt.show()
|
|
|
+
|
|
|
+
|
|
|
+local_definitions = seq_input.definitions
|
|
|
+ADC_raster = local_definitions['AdcRasterTime']
|
|
|
+RF_raster = local_definitions['RadiofrequencyRasterTime']
|
|
|
+
|
|
|
+RF_dtime = 100 * 1e-6
|
|
|
+TR_dtime = 100 * 1e-6
|
|
|
+# artificial delays
|
|
|
+
|
|
|
+time_info = seq_input.duration()
|
|
|
+blocks_number = time_info[1]
|
|
|
+time_dur = time_info[0]
|
|
|
+time_step = 20 * 1e-9
|
|
|
+N_samples = int(time_dur / time_step)
|
|
|
+# TODO: why two times bigger? what effort on output
|
|
|
+time_sample = np.linspace(0, time_dur, N_samples)
|
|
|
+
|
|
|
+gate_adc = np.zeros(N_samples)
|
|
|
+gate_rf = np.zeros(N_samples)
|
|
|
+gate_tr_switch = np.ones(N_samples)
|
|
|
+gate_gx = np.zeros(N_samples)
|
|
|
+gate_gy = np.zeros(N_samples)
|
|
|
+gate_gz = np.zeros(N_samples)
|
|
|
+
|
|
|
+local_delay_rf = RF_dtime
|
|
|
+local_delay_tr = TR_dtime
|
|
|
+local_raster_time = time_step
|
|
|
+
|
|
|
+# TODO: function defining beginning and ending of the RF events
|
|
|
+RF_assintant = [seq_output_dict['t_rf'][0] - RF_dtime, seq_output_dict['t_rf'][-1]]
|
|
|
+
|
|
|
+
|
|
|
+def gates_output(gates, synchro_impulse=20 * 1e-9):
|
|
|
+ for i_loc in range(len(gates['gx'])):
|
|
|
+ a = 1
|
|
|
+ with open('data_output/tr_switch.txt', 'w') as f:
|
|
|
+ data = str(tuple(gates['tr_switch']))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output/rf.txt', 'w') as f:
|
|
|
+ data = str(tuple(gates['rf']))
|
|
|
+ f.write(data)
|
|
|
+ with open('data_output/adc.txt', 'w') as f:
|
|
|
+ data = str(tuple(gates['adc']))
|
|
|
+ f.write(data)
|
|
|
+ data = {'gate_gx': tuple(gates['gx']),
|
|
|
+ 'gate_gy': tuple(gates['gy']),
|
|
|
+ 'gate_gz': tuple(gates['gz'])}
|
|
|
+ with open('data_output/gradient_gates.json', 'w') as outfile:
|
|
|
+ json.dump(data, outfile)
|
|
|
+
|
|
|
+
|
|
|
+def adc_correction():
|
|
|
+ rise_time, fall_time = None, None
|
|
|
+ is_adc_inside = False
|
|
|
+ for j in range(blocks_number - 1):
|
|
|
+ iterable_block = seq_input.get_block(block_index=j + 1)
|
|
|
+ if iterable_block.adc is not None:
|
|
|
+ is_adc_inside = True
|
|
|
+ rise_time = iterable_block.gx.rise_time
|
|
|
+ fall_time = iterable_block.gx.fall_time
|
|
|
+ if not is_adc_inside:
|
|
|
+ raise Exception("No ADC event found inside sequence")
|
|
|
+ return rise_time, fall_time
|
|
|
+
|
|
|
+
|
|
|
+def adc_event_edges(local_gate_adc):
|
|
|
+ num_begin_l = 0
|
|
|
+ flag_begin = False
|
|
|
+ flag_finish = False
|
|
|
+ num_finish_l = 1
|
|
|
+ for k in range(len(local_gate_adc) - 1):
|
|
|
+ if local_gate_adc[k] != 0 and not flag_begin:
|
|
|
+ num_begin_l = k
|
|
|
+ flag_begin = True
|
|
|
+ if local_gate_adc[k] != 0 and local_gate_adc[k + 1] == 0 and not flag_finish:
|
|
|
+ num_finish_l = k
|
|
|
+ flag_finish = True
|
|
|
+ return num_begin_l, num_finish_l
|
|
|
+
|
|
|
+
|
|
|
+for i in range(N_samples):
|
|
|
+ # delaying of RF event for time period of local delay
|
|
|
+ if RF_assintant[0] - RF_raster < time_sample[i] < RF_assintant[0] + RF_raster:
|
|
|
+ RF_stop = int(RF_assintant[1] / time_step)
|
|
|
+ gate_rf[i:RF_stop] = 1.0
|
|
|
+ var = 1
|
|
|
+ # mandatory disabling of RF gate due to ADC work same time
|
|
|
+ gate_rf_2 = map(lambda x: time_sample[i] - ADC_raster < x < time_sample[i] + ADC_raster and 1 or 0,
|
|
|
+ seq_output_dict['t_adc'])
|
|
|
+ if np.any(np.array(list(gate_rf_2)) > 0):
|
|
|
+ gate_rf[i] = 0.0
|
|
|
+ # TR switch with own delay before ADC turning
|
|
|
+ gate_tr_1 = map(lambda x: time_sample[i] - ADC_raster < x < time_sample[i] + ADC_raster and 1 or 0,
|
|
|
+ seq_output_dict['t_adc'])
|
|
|
+ if np.any(np.array(list(gate_tr_1)) > 0):
|
|
|
+ block_delay_tr = int(local_delay_tr / time_step)
|
|
|
+ gate_tr_switch[i - block_delay_tr:i + 1] = 0.0
|
|
|
+ # first step of ADC gate - enabling
|
|
|
+ # TODO: ADC gate feeling gradients form of rise and fall
|
|
|
+ gate_adc_1 = map(lambda x: time_sample[i] - ADC_raster < x < time_sample[i] + ADC_raster and 1 or 0,
|
|
|
+ seq_output_dict['t_adc'])
|
|
|
+ if np.any(np.array(list(gate_adc_1)) > 0):
|
|
|
+ gate_adc[i] = 1.0
|
|
|
+
|
|
|
+# adc correction sue to rise and fall time of gradient
|
|
|
+# defining time that ADC need to be disabled during of
|
|
|
+rise_time_loc, fall_time_loc = adc_correction()
|
|
|
+num_beg, num_fin = adc_event_edges(gate_adc)
|
|
|
+rise_time_tick = int(rise_time_loc / time_step)
|
|
|
+fall_time_tick = int(rise_time_loc / time_step)
|
|
|
+gate_adc[num_beg:num_beg + rise_time_tick] = 0.0
|
|
|
+gate_adc[num_fin - fall_time_tick:num_fin + 1] = 0.0
|
|
|
+
|
|
|
+gates_release = {"adc": gate_adc,
|
|
|
+ "rf": gate_rf,
|
|
|
+ "tr_switch": gate_tr_switch,
|
|
|
+ "gx": gate_gx,
|
|
|
+ "gy": gate_gy,
|
|
|
+ "gz": gate_gz}
|
|
|
+
|
|
|
+# plt.plot(seq_output_dict['t_gx'][:int(N_samples)], seq_output_dict['gx'][:int(N_samples)])
|
|
|
+# plt.plot(seq_output_dict['t_gy'][:int(N_samples)], seq_output_dict['gy'][:int(N_samples)])
|
|
|
+# plt.plot(seq_output_dict['t_gz'][:int(N_samples)], seq_output_dict['gz'][:int(N_samples)])
|
|
|
+# plt.show()
|
|
|
+#
|
|
|
+# plt.plot(seq_output_dict['t_gx'][:int(N_samples)], seq_output_dict['gx'][:int(N_samples)] / 720)
|
|
|
+# plt.plot(time_sample[:int(N_samples)], gate_adc[:int(N_samples)], label='ADC gate')
|
|
|
+# plt.plot(time_sample[:int(N_samples)], gate_tr_switch[:int(N_samples)], label='TR switch')
|
|
|
+# plt.plot(seq_output_dict['t_rf'], seq_output_dict['rf'] / 210, label='RF signal')
|
|
|
+# plt.plot(time_sample[:int(N_samples)], gate_rf[:int(N_samples)], label='RF gate')
|
|
|
+# plt.legend()
|
|
|
+# plt.show()
|
|
|
+
|
|
|
+# gates_output(gates_release)
|