#include "Elliptic_integrals.h" /** * Purpose: Compute elliptic integrals F(phi, k) and E(phi, k). Take from Shanjie Zhang, Jian-Ming Jin, "Computation of Special Functions", page 664-665 * * @param k - modulus k (-1 <= k <= 1) * @param phi - argument (in degrees), 0 <= phi <= 90 * @return Vector with values of F(phi, k)) (the first place) and E(phi, k) (the second place) * @throws "Error! k should be from -1 to 1", "Error! phi should be from 0 to 90" */ std::vector Elliptic(const double phi, const double k) { std::vector result; if ((phi > 90) || (phi < 0)) { std::cerr << "Parameter phi must be in the range [0, 90]" << std::endl; return result; } if ((k > 1) || (k < -1)) { std::cerr << "Parameter k must be in the range [-1, 1]" << std::endl; return result; } double G = 0.0; double pi = M_PI; double A0 = 1.0; double B0 = sqrt(1.0 - k * k); double D0 = pi / 180.0 * phi; double R = k * k; if (k == 1 and phi == 90) { double FE = std::numeric_limits::infinity(); double EE = 1.0; result.push_back(FE); result.push_back(EE); } else if (k == 1) { double FE = log((1.0 + sin(D0)) / cos(D0)); double EE = sin(D0); result.push_back(FE); result.push_back(EE); } else { double FAC = 1.0; double A; double B; double C; double D; for (int k = 1; k <= 1000; k++) { A = (A0 + B0) / 2.0; B = sqrt(A0 * B0); C = (A0 - B0) / 2.0; FAC = 2.0 * FAC; R = R + FAC * C * C; if (phi != 90) { D = D0 + atan((B0 / A0) * tan(D0)); G = G + C * sin(D); D0 = D + pi * int(D / pi + 0.5); } A0 = A; B0 = B; if (C < 1e-7) goto stop; continue; } stop: double CK = pi / (2.0 * A); double CE = pi * (2.0 - R) / (4.0 * A); if (phi == 90) { double FE = CK; double EE = CE; result.push_back(FE); result.push_back(EE); } else { double FE = D / (FAC * A); double EE = FE * CE / CK + G; result.push_back(FE); result.push_back(EE); } } return result; }