%{ Copyright © 2020 Alexey A. Shcherbakov. All rights reserved. This file is part of GratingFMM. GratingFMM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. GratingFMM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GratingFMM. If not, see . %} %% description: % calculation of a grating S-matrix by the Fourier Modal Method % in the case of the non-collinear diffraction by 1D gratings being periodic in x % dimension of the Cartesian coordinates %% input: % no: number of Fourier harmonics % kx0: incident plane wave wavevector x-projection (Bloch wavevector) % ky0: incident plane wave wavevector y-projection % (ky0=0 corresponds to the collinear diffraction) % kg: wavelength-to-period ratio (grating vector) % kh: grating depth multiplied by the vacuum wavenumber % eps1: permittivity of the substrate % eps2: permittivity of the superstrate % FE: Fourier matrix of the grating profile %% output: % SM: scattering matrix of size (2*no,2*no,2,2) % block SM(:,:,1,1) corresponds to refelection from substrate to substrate % block SM(:,:,2,2) corresponds to refelection from superstrate to superstrate % block SM(:,:,2,1) corresponds to transmission from substrate to superstrate % block SM(:,:,1,2) corresponds to transmission from superstrate to substrate % first no components in each of the two first dimensions if the S-matrix % correspond to the TE polarization, and indeces from no+1 to 2*no % correspond to the TM polarization % central harmonic index is ind_0 = ceil(no/2) % for example, an ampitude of the TE-polarized transmitted wave to i-th diffraction order % from the substrate to the superstrate under the TM plane wave illumination % with unit amplitude is SM(ind_0+i, no+ind_0, 2, 1) %% implementation function [SM] = fmmnc(no, kx0, ky0, kg, kh, eps1, eps2, FE) % block indices ib1 = 1:no; ib2 = no+1:2*no; ib3 = 2*no+1:3*no; ib4 = 3*no+1:4*no; % wavevector projections [kz1, kz2, kx, kxy] = fmm_kxz(no, kx0, ky0, kg, eps1, eps2); % permittivity Toeplitz matrices ME = toeplitz(FE(no:2*no-1,1),FE(no:-1:1,1)); % permittivity Toeplitz matrix MU = toeplitz(FE(no:2*no-1,2),FE(no:-1:1,2)); % inverse permittivity Toeplitz matrix % initialize the eigenvectors EV = zeros(2*no,2*no); HV = zeros(2*no,2*no); % matrix for the electric field IMU = eye(no)/MU; TM = ME\((kx').*IMU); EV(ib1,ib1) = IMU - (kx').*TM - (ky0^2)*eye(no); EV(ib2,ib1) = ky0*(diag(kx) - TM); EV(ib2,ib2) = ME - diag(kxy.*kxy); % solve the eigenvalue problem for the electric field [EV,MB] = eig(EV); beta = transpose(sqrt(diag(MB))); % row of eigenvalues ind = angle(beta) < -1e-7; % check the branch of the square root beta(ind) = -beta(ind); % calculate the magnetic field eigen vectors HV(ib2,ib2) = diag(ky0*kx); HV(ib1,ib1) = -HV(ib2,ib2); HV(ib2,ib1) = IMU - (ky0^2)*eye(no); HV(ib1,ib2) = diag(kx.*kx) - ME; HV = (HV*EV).*(1./beta); bexp = exp((1i*kh)*beta); % apply the boundary conditions: % calculate T-matrices TS = fmmnc_calc_T(no,EV,HV,kx,ky0,kxy,kz1,eps1); % susbtrate-grating T-matrix TC = fmmnc_calc_T(no,EV,HV,kx,ky0,kxy,kz2,eps2); % grating-cover T-matrix % initialization M1 = zeros(4*no,4*no); M2 = zeros(4*no,4*no); % combine T-matrices M1([ib1,ib2],[ib1,ib2]) = TS([ib3,ib4],[ib1,ib2]); M1([ib3,ib4],[ib3,ib4]) = TC([ib1,ib2],[ib3,ib4]); M1(ib1,ib3) = TS(ib3,ib3).*bexp(ib1); M1(ib2,ib3) = TS(ib4,ib3).*bexp(ib1); M1(ib1,ib4) = TS(ib3,ib4).*bexp(ib2); M1(ib2,ib4) = TS(ib4,ib4).*bexp(ib2); M1(ib3,ib1) = TC(ib1,ib1).*bexp(ib1); M1(ib4,ib1) = TC(ib2,ib1).*bexp(ib1); M1(ib3,ib2) = TC(ib1,ib2).*bexp(ib2); M1(ib4,ib2) = TC(ib2,ib2).*bexp(ib2); M2([ib1,ib2],[ib1,ib2]) = TS([ib1,ib2],[ib1,ib2]); M2([ib3,ib4],[ib3,ib4]) = TC([ib3,ib4],[ib3,ib4]); M2(ib1,ib3) = TS(ib1,ib3).*bexp(ib1); M2(ib2,ib3) = TS(ib2,ib3).*bexp(ib1); M2(ib1,ib4) = TS(ib1,ib4).*bexp(ib2); M2(ib2,ib4) = TS(ib2,ib4).*bexp(ib2); M2(ib3,ib1) = TC(ib3,ib1).*bexp(ib1); M2(ib4,ib1) = TC(ib4,ib1).*bexp(ib1); M2(ib3,ib2) = TC(ib3,ib2).*bexp(ib2); M2(ib4,ib2) = TC(ib4,ib2).*bexp(ib2); % attain S-matrix SM = M2S(M1/M2); end