%{ Copyright © 2020 Alexey A. Shcherbakov. All rights reserved. This file is part of GratingFMM. GratingFMM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. GratingFMM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GratingFMM. If not, see . %} %% description: % calculate a permittivity Fourier matrix of a 2D binary grating % being periodic in x and y dimensions of the 3D Cartesian coordinates %% input: % xno, yno: numbers of Fourier harmonics % cx, cy: rows of centers of a 2D rectangular mesh filling the grating period along % x and y dimensions normalized by the period (each value should be between -0.5 and 0.5) % dx, dy: rows of widths of a 2D rectangular mesh elements along % x and y dimensions normalized by the period (each value should be between 0 and 1) % eps: row of permittivities for each mesh element (length(eps) should be % equal to length(cx)*length(cy)) %% output: % FE: cell array containing two Fourier matrices of the permittivity and % inverse permittivity %% implementation: function [FE] = calc_emntd_bin(xno, yno, cx, cy, dx, dy, eps) nx = length(cx); ny = length(cy); if (length(cx)~=length(dx)) || (length(cy)~=length(dy)) || (length(eps)~=(nx*ny)) error("incorrect binary grating definition"); end FE = cellmat(1,2,2*yno-1,2*xno-1); [CX,CY] = meshgrid(cx,cy); [DX,DY] = meshgrid(dx,dy); ix = linspace(1,xno-1,xno-1); iy = linspace(1,yno-1,yno-1); [IX,IY] = meshgrid(ix,iy); for ip = 1:nx*ny fx = (sin(ix*pi*DX(ip))./(pi*ix)).*exp((-2*pi*1i*CX(ip))*ix); fy = (sin(iy*pi*DY(ip))./(pi*iy)).*exp((-2*pi*1i*CY(ip))*iy); FX = (sin(IX*pi*DX(ip))./(pi*IX)).*exp((-2*pi*1i*CX(ip))*IX); FY = (sin(IY*pi*DY(ip))./(pi*IY)).*exp((-2*pi*1i*CY(ip))*IY); M = zeros(2*yno-1,2*xno-1); M(yno+1:2*yno-1,xno) = DX(ip)*fy; M(yno-1:-1:1,xno) = conj(M(yno+1:2*yno-1,xno)); M(yno,xno+1:2*xno-1) = DY(ip)*fx; M(yno,xno-1:-1:1) = conj(M(yno,xno+1:2*xno-1)); M(yno+1:2*yno-1,xno+1:2*xno-1) = FX.*FY; M(yno+1:2*yno-1,xno-1:-1:1) = conj(FX).*FY; M(yno-1:-1:1,xno+1:2*xno-1) = FX.*conj(FY); M(yno-1:-1:1,xno-1:-1:1) = conj(FX.*FY); FE{1,1} = FE{1,1} + eps(ip)*M; FE{1,2} = FE{1,2} + (1/eps(ip))*M; FE{1,1}(yno,xno) = FE{1,1}(yno,xno) + DX(ip)*DY(ip)*eps(ip); FE{1,2}(yno,xno) = FE{1,2}(yno,xno) + DX(ip)*DY(ip)/eps(ip); end end % % end of calc_emntd_cyl %