%{ Copyright © 2020 Alexey A. Shcherbakov. All rights reserved. This file is part of GratingFMM. GratingFMM is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. GratingFMM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GratingFMM. If not, see <https://www.gnu.org/licenses/>. %} %% description: % T-matrix of an interface between a photonic crystal and a homogeneous medium % the case of the non-collinear diffraction on 1D gratings %% input: % no: number of Fourier harmonics % EV: matrix of the electric field eigenvectors for the photonic crystal % HV: matrix of the magnetic field eigenvectors for the photonic crystal % kx: row of grating vector projections in x direction % ky0: Bloch wavevector y-projection % kxy: row of grating vector projections in xy plane % kz: row of plane wave propagation constants in the homogeneous medium % eps: permittivity the homogeneous medium %% output: % T: T-matrix of size 4*no by 4*no %% implementation: function [T] = fmmnc_calc_T(no, EV, HV, kx, ky0, kxy, kz, eps) T = zeros(4*no,4*no); % pre-calculate combinations of wavevector projections ikxy = 0.5./kxy; ky_ikxy = ky0*ikxy; kx_ikxy = kx.*ikxy; ikxyz = ikxy./kz; ky_ikxyz = transpose(ky0*ikxyz);% kx_ikxyz = transpose(kx.*ikxyz);% eky_ikxyz = eps*ky_ikxyz; ekx_ikxyz = eps*kx_ikxyz; kx_ikxy = transpose(kx_ikxy);% ky_ikxy = transpose(ky_ikxy);% % block indices ib1 = 1:no; ib2 = no+1:2*no; ib3 = 2*no+1:3*no; ib4 = 3*no+1:4*no; % fill the T-matrix blocks: T(ib1,ib1) = EV(ib1,ib1).*ky_ikxy - EV(ib2,ib1).*kx_ikxy; T(ib1,ib3) = T(ib1,ib1); TM = HV(ib1,ib1).*kx_ikxyz + HV(ib2,ib1).*ky_ikxyz; T(ib1,ib1) = T(ib1,ib1) + TM; T(ib1,ib3) = T(ib1,ib3) - TM; T(ib3,ib3) = T(ib1,ib1); T(ib3,ib1) = T(ib1,ib3); T(ib1,ib2) = EV(ib1,ib2).*ky_ikxy - EV(ib2,ib2).*kx_ikxy; T(ib1,ib4) = T(ib1,ib2); TM = HV(ib1,ib2).*kx_ikxyz + HV(ib2,ib2).*ky_ikxyz; T(ib1,ib2) = T(ib1,ib2) + TM; T(ib1,ib4) = T(ib1,ib4) - TM; T(ib3,ib2) = T(ib1,ib4); T(ib3,ib4) = T(ib1,ib2); T(ib2,ib1) = -EV(ib1,ib1).*ekx_ikxyz - EV(ib2,ib1).*eky_ikxyz; T(ib2,ib3) = T(ib2,ib1); TM = HV(ib1,ib1).*ky_ikxy - HV(ib2,ib1).*kx_ikxy; T(ib2,ib1) = T(ib2,ib1) + TM; T(ib2,ib3) = T(ib2,ib3) - TM; T(ib4,ib1) = -T(ib2,ib3); T(ib4,ib3) = -T(ib2,ib1); T(ib2,ib2) = -EV(ib1,ib2).*ekx_ikxyz - EV(ib2,ib2).*eky_ikxyz; T(ib2,ib4) = T(ib2,ib2); TM = HV(ib1,ib2).*ky_ikxy - HV(ib2,ib2).*kx_ikxy; T(ib2,ib2) = T(ib2,ib2) + TM; T(ib2,ib4) = T(ib2,ib4) - TM; T(ib4,ib2) = -T(ib2,ib4); T(ib4,ib4) = -T(ib2,ib2); end